Imaging of the deteriorations and concrete quality of the tunnels (Zigina, Torul) with ground penetrating radar

Author(s):  
Isil Saricicek ◽  
Aysel Seren
2012 ◽  
Vol 6 (6) ◽  
pp. 1435-1443 ◽  
Author(s):  
A. Gusmeroli ◽  
G. Grosse

Abstract. Lakes are abundant throughout the pan-Arctic region. For many of these lakes ice cover lasts for up to two thirds of the year. The frozen cover allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe traveling condition onto lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the ice and causes liquid water to spill through weak spots and overflow at the snow-ice interface. Since visual detection of subsnow slush is almost impossible our understanding on overflow processes is still very limited and geophysical methods that allow water and slush detection are desirable. In this study we demonstrate that a commercially available, lightweight 1 GHz, ground penetrating radar system can detect and map extent and intensity of overflow. The strength of radar reflections from wet snow-ice interfaces are at least twice as much in strength than returns from dry snow-ice interface. The presence of overflow also affects the quality of radar returns from the base of the lake ice. During dry conditions we were able to profile ice thickness of up to 1 m, conversely, we did not retrieve any ice-water returns in areas affected by overflow.


2018 ◽  
Vol 23 (4) ◽  
pp. 489-496
Author(s):  
J. David Redman ◽  
A. Peter Annan ◽  
Nectaria Diamanti

Bulk electrical properties of media are important inherently for ground penetrating radar (GPR) applications and for providing a means to determine indirectly other physical properties such as moisture content. We have developed a reflector whose reflectivity can be controlled electronically. This variable reflector controlled by a GPR provides an effective method to measure bulk electrical properties of media. For sample measurements, the GPR is placed on one side of a sample and the variable reflector on the opposite side. GPR trace data are then acquired with the reflector in an on-state and in the off-state. By differencing these measurements, we improve the ability to detect the specific reflection event from the variable reflector. This process removes both the direct wave and clutter from the trace data, improving the quality of the refection event and our ability to accurately pick its arrival time and amplitude. We describe the variable reflector, a prototype instrument based on the reflector and numerical modeling performed to understand its response. We also show the results of testing applications to the measurement of wood chip moisture content and monitoring of the electrical properties of concrete during the curing process.


2011 ◽  
Vol 228-229 ◽  
pp. 1185-1189
Author(s):  
Su Qi ◽  
Xing Xing Chen

The priority of traditional tunnel concrete quality testing method is drilling core .The traditional method damage tunnel structure and detection speed is slowly.we use this method cann’t effectively meet the demand of rapid growth of tunnel concrete qulity testing. So the more fast and effective detection methods are needed.A new fast and effective kind of concrete quality detection methods is ground penetrating radar can meet the extensive tunnel concrete nondestructive testing. This paper introduces the basic principle of ground penetrating radar.I illustrate the application of railway tunnel testing by the testing in Ju Gan runnel of Lan Yue railway.TI is significance for railway tunnel concrete in future.


2019 ◽  
Vol 136 ◽  
pp. 04032
Author(s):  
Meng Li ◽  
Changde Ren ◽  
Lei Zhao ◽  
Shijiao Luo

If the sand-free cushion of concrete anti-seepage panels of reservoir is void, it will cause local instability or even crack and collapse of the panel, which will lead to large leakage of reservoir and affect the safe operation of the project. In this paper, the ground-penetrating radar (GPR) method is used to scan the concrete panel. The results show that the quality of the panel is good overall, the distribution of rebar is uniform, and the contact between the panel and the sand-free cushion is dense. Some panels have internal voids and the contact between the cushion and the rock foundation is not dense, while no obvious hollowing is found in the sand-free cushion.


2012 ◽  
Vol 6 (4) ◽  
pp. 3079-3099 ◽  
Author(s):  
A. Gusmeroli ◽  
G. Grosse

Abstract. Lakes are abundant throughout the pan-Arctic region. For many of these lakes ice cover lasts for up to two thirds of the year. This frozen cover allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe access to these lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the ice and causes liquid water to spill through weak spots and overflow at the snow-ice interface. Since visual detection of subsnow liquid overflow (SLO) is almost impossible our understanding on SLO processes is still very limited and geophysical methods that allow SLO detection are desirable. In this study we demonstrate that a commercially available, lightweight 1GHz, ground penetrating radar system can detect and map extent and intensity of SLO. Radar returns from wet snow-ice interfaces are at least twice as much in strength than returns from dry snow-ice interface. The presence of SLO also affects the quality of radar returns from the base of the lake ice. During dry conditions we were able to profile ice thickness of up to 1 m, conversely, we did not retrieve any ice-water returns in areas affected by SLO.


2021 ◽  
Vol 13 (19) ◽  
pp. 3886 ◽  
Author(s):  
Łukasz Ortyl ◽  
Marta Gabryś

During road construction investments, the key issue affecting the structure’s safety is accurate subsoil recognition. Identifying subsoil variability zones or natural voids can be performed using geophysical methods, and ground-penetrating radar (GPR) is recommended for this task as it identifies the location and spatial range karst formations. This paper describes the methodology of acquisition and processing of GPR data for ground recognition for road investment. Additional subsoil research was performed after karst phenomena were identified in the investment area, formations not revealed by geological recognition from earlier studies during the pre-design stage. Mala Ramac CU II radar with a 250 MHz antenna and a Leica DS2000 with 250 and 700 MHz antennas with real-time geopositioning were used to obtain the data. Regarding GPR data postprocessing, we present a method of converting spatial visualization into a point cloud that allows for GPR and geodetic data integration and confrontation. This approach enabled us to determine the locations of control trenches, the results of which were used for material validation, which is necessary to improve the reliability of subsoil recognition. The results showed a high correlation between the recorded GPR signals and the subsoil structure. Additionally, differences in the quality of results for measurements conducted before laying supporting layers with slag and on the completed road structure surface are illustrated.


2013 ◽  
Vol 639-640 ◽  
pp. 1051-1055 ◽  
Author(s):  
Xian Yan Zhou ◽  
Jian Luan ◽  
Da Hai Zhang

With the wide applications of post-tensioned concrete structures, the grouting conditions of tendon ducts are paid more attentions. In order to accurately assess the internal grouting quality of the grouted tendon ducts and certainly guarantee the lifetime of prestressed concrete structures Ground Penetrating Radar (GPR), which is a kind of nondestructive testing (NDT) method, has been applied to inspect and evaluate qualitatively and quantitatively on the grouting defects, respectively. A series of in-house tests were carried out for simulating the defects of tendon ducts by foams with different sizes. The results show that the GPR technic was one of the optimal methods for inspecting the internal grouting quality of grouted tendon ducts for post-tensioned concrete structures.


Author(s):  
Alireza Joshaghani ◽  
Dan G. Zollinger

The management of concrete pavement curing must take several factors into account, such as the type of curing compound, the rate of the curing application, the uniformity of the curing application, the timing of the application, and the ambient weather conditions. This paper aims to elucidate a new curing application protocol for new concrete pavement construction and introduce a technique to address curing viability. Data for the development of the protocol were obtained from field investigations involving a series of test sections associated with concrete paving projects in: Victoria, TX; Itasca, IL; and Jacksonville, FL. For this undertaking, ground-penetrating radar technology was used to evaluate the efficacy of curing in relation to repeatability and uniformity. Statistical analysis was used to validate the utility of using dielectric measurements to qualify the curing quality. The rate of decrease in the dielectric constant was the critical parameter for evaluating a curing practice. Also, based on the coefficient of variation of data collection, the repeatability of data was acceptable. Finally, as a new method for checking the uniformity of curing applications, percent within limits (PWL) was implemented. Based on the PWL results, the hand-spraying led to a higher degree of non-uniformity in the spraying patterns compared with the spraying machine.


2021 ◽  
Author(s):  
Adam Booth ◽  
Tiffany Koylass

Recent studies highlight the potential of the drone platform for ground penetrating radar (GPR) surveying. Most guidance for optimising drone flight-heights is based on maximising the image quality of target responses, but no study yet considers the impact on diffraction travel-times. Strong GPR velocity contrasts across the air-ground interface introduce significant refraction effects that distort diffraction hyperbolae and introduce errors into diffraction-based velocity analysis. The severity of these errors is explored with synthetic GPR responses, using ray- and finite-difference approaches, and a real GPR dataset acquired over a sequence of diffracting features buried up to 1 m in the ground. Throughout, GPR antennas with 1000 MHz centre-frequency are raised from the ground to heights < 0.9 m (0-3 times the wavelength in air). Velocity estimates are within +10% of modelled values (spanning 0.07-0.13 m/ns) if the antenna height is within ½ wavelength of the ground surface. Greater heights reduce diffraction curvature, damaging velocity precision and masking diffractions against a background of subhorizontal reflectivity. Real GPR data highlight further problems of the drone-based platform, with data dominated by reverberations in the air-gap and reduced spatial resolution of wavelets at target depth. We suggest that a drone-based platform is unsuitable for diffraction-based velocity analysis, and any future drone surveys are benchmarked against ground-coupled datasets.


2013 ◽  
Vol 477-478 ◽  
pp. 1504-1508
Author(s):  
Wen Tai Lei ◽  
Yu Jia Shi

The article proposes a new imaging method for ground penetrating radar (GPR) nondestructive testing (DET). Traditional GPR range migration (RM) imaging algorithm regards all the data in GPR echo data as equally important. This assumption is always not in consistent with real GPR detection scenario and usually cannot obtain high quality imaging results. To improve the quality of GPR imaging results, a new windowed RM imaging algorithm is presented in this paper. The radar profile is processed by one-dimensional windowed Fourier transform. The central point of window function is determined by maximum intensity technique. By using windowed RM imaging algorithm, the clutter of GPR profile is suppressed and the imaging results quality is improved. The simulation of this algorithm is processed and experimental results validate the feasibility of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document