A Look-ahead Velocity Blending Model for High Speed CNC Machining of Small Line Blocks

Author(s):  
Wang YongChao
Keyword(s):  
2011 ◽  
Vol 54 (6) ◽  
pp. 1481-1495 ◽  
Author(s):  
LiXian Zhang ◽  
RuiYong Sun ◽  
XiaoShan Gao ◽  
HongBo Li

Author(s):  
Behnam Moetakef Imani ◽  
Amirmohammad Ghandehariun

Various methods for parametric interpolation of NURBS curves have been proposed in the past. However, the errors caused by the approximate nature of the NURBS interpolator were rarely taken into account. This paper proposes an integrated look-ahead algorithm for parametric interpolation along NURBS curves. The algorithm interpolates the sharp corners on the curve with the Pythagorean-hodograph (PH) interpolation. This will minimize the geometric and interpolator approximation errors simultaneously. The algorithm consists of four different modules: a sharp corner detection module, a PH construction module, a jerk-limited module, and a dynamics module. Simulations are performed to show correctness of the proposed algorithm. Experiments on an X-Y table confirm that the developed method improves tracking and contour accuracies significantly when compared to previously proposed adaptive-feedrate and curvature-feedrate algorithms.


Author(s):  
Xiaodong Yu ◽  
Yu Wang ◽  
Junfeng Wang ◽  
Wenkai Zhou ◽  
Hongwei Bi ◽  
...  

Background: Hydrostatic bearings have the advantages of strong bearing capacity, good stability, small friction coefficient and long life. The performance of liquid hydrostatic bearings directly affect the accuracy and efficiency of CNC machining equipment. The performance is conducive to the development of CNC machine tools towards high speed and heavy load, so it is necessary to sort out and summarize the existing research results. Objective: This study summarizes the current development status of hydrostatic bearings and explains the development trend of hydrostatic bearings. Methods: According to the recently published journal articles and patents, the recent experimental research on hydrostatic thrust bearings is summarized. This paper summarizes many factors that affect the performance of hydrostatic bearings, and discusses the causes of various factors on hydrostatic bearings. Finally, future research on hydrostatic bearings is presented. Results: The study discusses experimental methods, simulation processes, and experimental results. Conclusion: This study can produce dynamic and static pressure effects by changing the structure of the oil cavity of the hydrostatic bearing. This effect can make up for the static pressure loss. By improving the theoretical formula and mathematical model and proposing a new simulation method, the accuracy of the hydrostatic bearing simulation is satisfied; the future development trend of the hydrostatic bearing is proposed.


2014 ◽  
Vol 703 ◽  
pp. 163-166
Author(s):  
Yuan Yuan Wang ◽  
Jun Zhao ◽  
Fei Li

The cutting location of cutting-edge curves is obtained by the mathematic models of indexable inserts, and based on the softwares of UG and NCSIMUL, The virtual machining platform is realized to simulate the whole processing of grinding. The Entity modelings of indexable inserts are obtained by Boolean operation in virtual environment, and the basis is presented for analyzing accuracy of the mathematic models and the virtual machining platform. Testing efficiency of NC code and reliability of high speed grinding are improved. This method provides precise 3D models which can be used in the followed works such as finite analysis, CNC machining and so on.


Author(s):  
Lixian Zhang ◽  
Xiao-shan Gao ◽  
Hongbo Li

In this paper, a multi-period turning interpolation algorithm, with real-time look-ahead scheme based on S-curve control method, is presented. In this interpolation algorithm, the geometric precision and the dynamic performance are both satisfied. The machining efficiency is improved by multi-period turning transition, and the precision is also improved by S-curve control method. The computational efficiency of this algorithm meets the need of real-time machining. In addition, there is no accumulated error. At last, this algorithm is verified the validation by the experiments on 3-axis CNC machine.


2019 ◽  
Vol 11 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Jitendra Kumar Saini ◽  
Avireni Srinivasulu ◽  
Renu Kumawat

The transformation from the development of enabling technology to mass production of consumer-centric semiconductor products has empowered the designers to consider characteristics like robustness, compactness, efficiency, and scalability of the product as implicit pre-cursors. The Carbon Nanotube Field Effect Transistor (CNFET) is the present day technology. In this manuscript, we have used CNFET as the enabling technology to design a 1-bit Full Adder (1b-FA16) with overflow detection. The proposed 1b-FA16 is designed using 16 transistors. Finally, the proposed 1b-FA16 is further used to design a Ripple Carry Adder (RCA), Carry Look Ahead Adder (CLA) circuit and RCA with overflow bit detection. Methods and Results: The proposed 1b-FA16 circuit was designed with CNFET technology simulated at 32 nm with a voltage supply of +0.9 V using the Cadence Virtuoso CAD tool. The model used is Stanford PTM. Comparison of the existing full adder designs with the proposed 1b-FA16 design was done to validate the improvements in terms of power, delay and Power Delay Product (PDP). Table 2, shows the results of comparison for the proposed 1b-FA16 with the existing full adder designs implemented using CNFET for parameters like power, delay and power delay product. Conclusion: It can be concluded that the proposed 1b-FA16 yielded better results as compared to the existing full adder designs implemented using CNFET. The improvement in power, delay and power delay product was approximately 11%, 9% and 24% respectively. Hence, the proposed circuit implemented using CNFET gives a substantial rate of improvements over the existing circuits.


2004 ◽  
Vol 128 (2) ◽  
pp. 494-502 ◽  
Author(s):  
Jeng-Shyong Chen ◽  
Wei-Yao Hsu

This paper is focused on the dynamic and compliant characteristics of a three-axis parallel kinematic machine called a Cartesian-guided tripod (CGT), which has a passive leg locking the platform three rotational degrees of freedom. Because no constraint mechanism is perfect with infinite rigidity, a compliance model has been developed to determine the maximum amplitude of the passive-leg parasitic motions using given loads. System compliance, dynamic characteristics, vibration modes, and servo-contouring errors of the CGT driving system have also been evaluated under high-speed machining conditions. The nonlinear dynamic effects, such as inertia and gravity, can be controlled within acceptable accuracy using the high-gain servo-feedback control techniques. The CGT dominant flexible mode occurs on the horizontal platform-leg vibration. The platform-leg flexible mode can produce significant jerk-induced mechanical vibration on the platform when a sudden velocity change is commanded. Look-ahead Cartesian-based path acceleration and deceleration control was found to be an efficient tool to reduce the jerk-induced mechanical vibration, although the CGT was drive controlled at the joint level. It was found that at high acceleration application, such as high-speed mold and die machining, the elastic elongation of the driving leg caused by the high acceleration force became the dominant contouring error sources.


Sign in / Sign up

Export Citation Format

Share Document