Mechanical Design and Optimization on Lower Limb Exoskeleton for Rehabilitation

Author(s):  
Jianhua Wang ◽  
Yuchong Pang ◽  
Xin Chang ◽  
Weihai Chen ◽  
Jianbin Zhang
Meccanica ◽  
2020 ◽  
Author(s):  
Stefano L. Capitani ◽  
Matteo Bianchi ◽  
Nicola Secciani ◽  
Marco Pagliai ◽  
Enrico Meli ◽  
...  

AbstractDespite the current industrial trend towards automation, many workers are still daily exposed to heavy loads during their duties. Regarding the construction industry, the shotcrete projection results in a particularly arduous whole-body effort for the so-called “concrete reinforcement workers”. In this paper, the design of a passive robotic human assistance tool to assist workers in dealing with the specific task of shotcrete projection will be described. If the design of an effective aid plays a crucial role in improving the job’s quality, following the guidelines given by the French company Eiffage Infrastructures; besides, the acceptance of the proposed solution shall have special consideration. Therefore, starting from an in-site assessment of the scenario, the presented solution has been profoundly adjusted to address the issues coming from this particular task. The exoskeleton adaptability to different lower-limb activities has been preserved without lowering its comfort during daily life in the working area. The developed solution’s operation range has been specifically optimized to assist the worker during specific efforts without hindering the other movements.


The number of people with mobility disorder cause by stroke spinal cord injury or related disease is increasing rapidly.To improve quality of life of this people device that can assist them to regain the ability to work are of great demand. Robotic devices are generally used for purpose.The aim of this paper is to present the design and analysis of lower limb exoskeletons.The Exoskeleton is designed by Mechanical Design Procedure for linkages and against the Position values obtained from Gait Analysis.The Gearbox is designed using standard design procedure. This exoskeleton work on the principle of robotics by using sensors, actuator like DC motor. Gait analysis is used as a primary analysis followed by static and dynamic analysis of designed model.Static and Dynamic Analysis is performed in ANSYS Workbench. This exoskeleton will be used for paralyzed patient (paraplegia)as well as for the people who have had accidents for lower body.The limitation of this work is the same exoskeleton cannot be used for all person and a small defect in sensor and other electronic devices will stop the exoskeleton. Using this exoskeleton a paralyzed patient will be able to rehabilitate they will be able to perform stand to sit motion.


Author(s):  
Allaoua Brahmia ◽  
Ridha Kelaiaia

Abstract To establish an exercise in open muscular chain rehabilitation (OMC), it is necessary to choose the type of kinematic chain of the mechanical / biomechanical system that constitutes the lower limbs in interaction with the robotic device. Indeed, it’s accepted in biomechanics that a rehabilitation exercise in OMC of the lower limb is performed with a fixed hip and a free foot. Based on these findings, a kinematic structure of a new machine, named Reeduc-Knee, is proposed, and a mechanical design is carried out. The contribution of this work is not limited to the mechanical design of the Reeduc-Knee system. Indeed, to define the minimum parameterizing defining the configuration of the device relative to an absolute reference, a geometric and kinematic study is presented.


Author(s):  
Wilian dos Santos ◽  
Samuel Lourenco ◽  
Adriano Siqueira ◽  
Polyana Ferreira Nunes

Sign in / Sign up

Export Citation Format

Share Document