Determining mobile device indoor and outdoor location in various environments: Estimation of user context

Author(s):  
Katsuyoshi Ozaki ◽  
Shogo Matsuno ◽  
Keisuke Yoshida ◽  
Minoru Ohyama
Author(s):  
Asma Saighi ◽  
Zakaria Laboudi ◽  
Philippe Roose ◽  
Sébastien Laborie ◽  
Nassira Ghoualmi-Zine

Currently, advanced technological hardware can offer mobile devices which fits in the hand with a capacity to consult documents at anytime and anywhere. Multiple user context constraints as well as mobile device capabilities may involve the adaptation of multimedia content. In this article, the authors propose a new graph-based method for adapting multimedia documents in complex situations. Each contextual situation could correspond to a physical handicap and therefore triggers an adaptation action using ontological reasoning. Consequently, when several contextual situations are identified, this leads to multiple disabilities and may give rise to inconsistency between triggered actions. Their method allows modeling relations between adaptation-actions to select the compatible triggerable ones. In order to evaluate the feasibility and the performance of their proposal, an experimental study has been made on some real scenarios. When tested and compared with some existing approaches, their proposal showed improvements according to various criteria.


2013 ◽  
Vol 18 (2) ◽  
pp. 271-285 ◽  
Author(s):  
Massimo Ficco ◽  
Francesco Palmieri ◽  
Aniello Castiglione

Author(s):  
Pooja Tandon ◽  
Brian Saelens ◽  
Chuan Zhou ◽  
Dimitri Christakis

The aims of this study were to quantify and examine differences in preschoolers’ indoor and outdoor sedentary time and physical activity intensity at child care using GPS devices and accelerometers. We conducted an observational study of 46 children (mean age 4.5 years, 30 boys, 16 girls) from five child care centers who wore accelerometers and GPS devices around their waists for five days during regular child care hours. GPS signal-to-noise ratios were used to determine indoor vs. outdoor location. Accelerometer data were categorized by activity intensity. Children spent, on average, 24% of child care time outdoors (range 12–37% by site), averaging 74 min daily outdoors (range 30–119 min), with 54% of children spending ≥60 min/day outdoors. Mean accelerometer activity counts were more than twice as high outdoors compared to indoors (345 (95) vs. 159 (38), (p < 0.001)), for girls and boys. Children were significantly less sedentary (51% of time vs. 75%) and engaging in more light (18% vs. 13%) and moderate-to-vigorous (MVPA) (31% vs. 12%) activity when outdoors compared to indoors (p < 0.001). To achieve a minute of MVPA, a preschooler needed to spend 9.1 min indoors vs. 3.8 min outdoors. Every additional 10 min outdoors each day was associated with a 2.9 min increase in MVPA (2.7 min for girls, 3.0 min for boys). Preschool-age children are twice as active and less sedentary when outdoors compared to indoors in child care settings. To help preschoolers achieve MVPA recommendations and likely attain other benefits, one strategy is to increase the amount of time they spend outdoors and further study how best to structure it.


2018 ◽  
Vol 15 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Matthew Pearce ◽  
David H. Saunders ◽  
Peter Allison ◽  
Anthony P. Turner

Background: The distribution of adolescent moderate to vigorous physical activity (MVPA) across multiple contexts is unclear. This study examined indoor and outdoor leisure time in terms of being structured or unstructured and explored relationships with total daily MVPA. Methods: Between September 2012 and January 2014, 70 participants (aged 11–13 y) from 4 schools in Edinburgh wore an accelerometer and global positioning system receiver over 7 days, reporting structured physical activity using a diary. Time spent and MVPA were summarized according to indoor/outdoor location and whether activity was structured/unstructured. Independent associations between context-specific time spent and total daily MVPA were examined using a multivariate linear regression model. Results: Very little time or MVPA was recorded in structured contexts. Unstructured outdoor leisure time was associated with an increase in total daily MVPA almost twice that of unstructured indoor leisure time [b value (95% confidence interval), 8.45 (1.71 to 14.48) vs 4.38 (0.20 to 8.22) minute increase per hour spent]. The association was stronger for time spent in structured outdoor leisure time [35.81 (20.60 to 52.27)]. Conclusions: Research and interventions should focus on strategies to facilitate time outdoors during unstructured leisure time and maximize MVPA once youth are outdoors. Increasing the proportion of youth engaging in structured activity may be beneficial given that, although time spent was limited, association with MVPA was strongest.


2022 ◽  
pp. 173-201
Author(s):  
Asma Saighi ◽  
Zakaria Laboudi ◽  
Philippe Roose ◽  
Sébastien Laborie ◽  
Nassira Ghoualmi-Zine

Currently, advanced technological hardware can offer mobile devices which fits in the hand with a capacity to consult documents at anytime and anywhere. Multiple user context constraints as well as mobile device capabilities may involve the adaptation of multimedia content. In this article, the authors propose a new graph-based method for adapting multimedia documents in complex situations. Each contextual situation could correspond to a physical handicap and therefore triggers an adaptation action using ontological reasoning. Consequently, when several contextual situations are identified, this leads to multiple disabilities and may give rise to inconsistency between triggered actions. Their method allows modeling relations between adaptation-actions to select the compatible triggerable ones. In order to evaluate the feasibility and the performance of their proposal, an experimental study has been made on some real scenarios. When tested and compared with some existing approaches, their proposal showed improvements according to various criteria.


Author(s):  
Hiroki Takatsuka ◽  
Seiki Tokunaga ◽  
Sachio Saiki ◽  
Shinsuke Matsumoto ◽  
Masahide Nakamura

Purpose The purpose of this paper is to develop a facade for seamlessly using locating services and enabling easy development of an application with indoor and outdoor location information without being aware of the difference of individual services. To achieve this purpose, in this paper, a unified locating service, called KULOCS (Kobe-University Unified LOCating Service), which horizontally integrates the heterogeneous locating services, is proposed. Design/methodology/approach By focusing on technology-independent elements [when], [where] and [who] in location queries, KULOCS integrates data and operations of the existing locating services. In the data integration, a method where the time representation, the locations and the namespace are consolidated by the Unix time, the location labels and the alias table, respectively, is proposed. Based on the possible combinations of the three elements, an application-neutral application programming interface (API) for the operation integration is derived. Findings Using KULOCS, various practical services are enabled. In addition, the experimental evaluation shows the practical feasibility by comparing cases with or without KULOCS. The result shows that KULOCS reduces the effort of application development, especially when the number of locating services becomes large. Originality/value KULOCS works as a seamless facade with the underlying locating services, the users and applications consume location information easily and efficiently, without knowing concrete services actually locating target objects.


Sign in / Sign up

Export Citation Format

Share Document