P/sup 2/CA: a new face recognition scheme combining 2D and 3D information

Author(s):  
A. Rama ◽  
F. Tarres
2006 ◽  
Vol 61 (3) ◽  
pp. 201-208 ◽  
Author(s):  
R. Bell ◽  
J.-E. Kruse ◽  
A. Garcia ◽  
T. Glade ◽  
A. Hördt

Abstract. Landslides occur frequently all over the world, causing at times considerable economic damage, injuries and even death. In order to improve hazard assessment, common landslide types of a given region need to be investigated in detail. While traditional techniques of subsurface investigation are expensive and only provide point information, geophysical methods are suitable tools for gathering 2D and 3D information on the subsurface quickly, reliably and cost-effectively. In this study, the suitability and limitations of 2D resistivity for the determination of landslide extent, structure and soil moisture conditions are presented. For this purpose, two identical profiles were taken during a two-month period. Significant differences in electrical resistivity (>1000 Ωm) due to varying soil moisture conditions were observed. Using various inversion parameters, it was possible to model two distinct subsurface images. Regrettably, the sliding plane could not be detected reliably, possibly due to the homogeniety of the landslide material and underlying bedrock.


Author(s):  
Hengliang Tang ◽  
Yanfeng Sun ◽  
Baocai Yin ◽  
Yun Ge

2017 ◽  
Vol 2017 (1) ◽  
pp. 000087-000092
Author(s):  
Dario Alliata ◽  
Stephane Godny ◽  
Cleonisse Serrecchia ◽  
Tristan Combier ◽  
Astrid Sippel ◽  
...  

Abstract In this paper, Confocal Chromatic Microscopy was investigated to characterize the micro-bump fabrication process. We designed and fabricated in house a new detector that integrates through the same optical chromatic lens two light beams that are reflected into a 2D line scan camera and a spectrometer to obtain on the fly 2D and 3D information while scanning the wafer surface. We inspected 300 mm round wafers hosting arrays of copper micro-bumps down to 10 μm in width and 5 μm in height at post Cu growing and etching step. The 2D inspection revealed the presence of partial μbumps, shifted and missing μbumps. The 3D inspection could recognize shorter and taller bumps and determine the coplanarity of each bump population at die level. This information could be used to classify GOOD and BAD dies over the wafer, so that after dicing only known good dies would be used in the following advanced packaging step. In this way, the risk of shorts and / or missing contact is minimized when stacking dies either on a wafer or on a die.


Author(s):  
Ajmal Mian ◽  
Mohammed Bennamoun ◽  
Robyn Owens
Keyword(s):  

2018 ◽  
Vol 7 (2) ◽  
pp. 35-56
Author(s):  
Fransje Lucretia Hooimeijer ◽  
Ignace van Campenhout

Although severely altered, the urban subsurface is the base of the natural system, and is crucial for a stable, green, healthy, and liveable city. It is also the technical space, the engine room of the city where vital functions such as water, electricity, sewers, and drainage are located. This hybrid state needs to be recognized when designing resilient and durable (subsurface) infrastructure within urban renewal projects, so as to properly employ the parameters of both natural and technical systems. Interdisciplinary work is needed in order to be able to link natural systems (a) the water cycle, (b) soil and subsurface conditions, (c) soil improvement technology, and (d) opportunities for urban renewal (e.g. urban growth or shrinkage) in an efficient way. The importance of implementing “boundary spanning” when doing interdisciplinary work that deals with the effects of climate change is a widely recognized method, and has been an object of study in the city of Rotterdam in the past decade. The particular need for a “distributed agency” became clear during several research projects dealing with climate change, because it enables different actors to contribute to the development of the project at different phases. The representation of the city as both a natural and technical construction has been tested through the use of 2D and 3D information, which has played a significant role in enabling designs to incorporate the dimension of the subsurface. 2D and 3D information needs to anticipate different scales of specific planning and/or design phases, and they must also address various topics of the subsurface. For each phase of urban development, the distributed agency between 2D and 3D information is investigated and reflected upon. Conclusions are then drawn on the relationship between 2D and 3D information, and how it could relate in a productive, boundary spanning act that is inclusive of the subsurface. Based on these potential connections, the design of a new concept which implements boundary spanning as a facilitator is presented.


2020 ◽  
Vol 10 (3) ◽  
pp. 1078 ◽  
Author(s):  
Elisavet Tsilimantou ◽  
Ekaterini T. Delegou ◽  
Ioannis A. Nikitakos ◽  
Charalabos Ioannidis ◽  
Antonia Moropoulou

Multidisciplinary data integration within an information system is considered a key point for rehabilitation projects. Information regarding the state of preservation and/or decision making, for sustainable restoration is prerequisite. In addition, achieving structural integrity of a historic building, especially one that has undergone many construction phases and restoration interventions, is a very elaborate task and should, therefore, involve the study of multidisciplinary information regarding historical, architectural, building material and geometric data. In this paper the elaboration of such data within 2D and 3D information systems is described. Through the process described herein, a methodology, including the acquisition, classification and management of various multisensory data, is displayed and applied within a geographic information system (GIS). Moreover, the multidisciplinary documentation process, aggregated with the surveying products, generates 3D heritage building information modeling (HBIM), including information regarding construction phases, pathology and current state of preservation of a building. The assessment of the applied methodology is performed concluding in a qualitative and a quantitative manner, in both 2D and 3D environments, providing information to facilitate the structural assessment of a historic building. Thus, in this work, the described methodology is presented, combining the multidisciplinary data with the development of GIS thematic maps and an HBIM. Representative results of the suggested methodology applied on the historic building of Villa Klonaridi, Athens, Greece are displayed.


Sign in / Sign up

Export Citation Format

Share Document