scholarly journals Distributed Agency Between 2D and 3D Representation of the Subsurface

2018 ◽  
Vol 7 (2) ◽  
pp. 35-56
Author(s):  
Fransje Lucretia Hooimeijer ◽  
Ignace van Campenhout

Although severely altered, the urban subsurface is the base of the natural system, and is crucial for a stable, green, healthy, and liveable city. It is also the technical space, the engine room of the city where vital functions such as water, electricity, sewers, and drainage are located. This hybrid state needs to be recognized when designing resilient and durable (subsurface) infrastructure within urban renewal projects, so as to properly employ the parameters of both natural and technical systems. Interdisciplinary work is needed in order to be able to link natural systems (a) the water cycle, (b) soil and subsurface conditions, (c) soil improvement technology, and (d) opportunities for urban renewal (e.g. urban growth or shrinkage) in an efficient way. The importance of implementing “boundary spanning” when doing interdisciplinary work that deals with the effects of climate change is a widely recognized method, and has been an object of study in the city of Rotterdam in the past decade. The particular need for a “distributed agency” became clear during several research projects dealing with climate change, because it enables different actors to contribute to the development of the project at different phases. The representation of the city as both a natural and technical construction has been tested through the use of 2D and 3D information, which has played a significant role in enabling designs to incorporate the dimension of the subsurface. 2D and 3D information needs to anticipate different scales of specific planning and/or design phases, and they must also address various topics of the subsurface. For each phase of urban development, the distributed agency between 2D and 3D information is investigated and reflected upon. Conclusions are then drawn on the relationship between 2D and 3D information, and how it could relate in a productive, boundary spanning act that is inclusive of the subsurface. Based on these potential connections, the design of a new concept which implements boundary spanning as a facilitator is presented.

2020 ◽  
Vol 12 (21) ◽  
pp. 9017 ◽  
Author(s):  
Maria Adriana Cardoso ◽  
Maria João Telhado ◽  
Maria do Céu Almeida ◽  
Rita Salgado Brito ◽  
Cristina Pereira ◽  
...  

According to the United Nations, by 2030, 60% of the world’s population will live in cities, and 70% by 2050. Both consolidated and fast urbanizing areas face diverse acute shocks from natural disasters and long-term stresses, such as the effects of climate change. Therefore, there is a need for cities to implement plans for increasing resilience and improving preparedness to cope with both acute shocks and long-term stresses. Development of resilience action plans (RAP) constitutes an important process for the cities to plan their resilience enhancement in the long, medium, and short terms. These are key tools for the city, considering the associated complexity, uncertainties, data scarcity, interdependencies among urban services provided in the city, as well as involved stakeholders. Herein, a framework is presented to support city resilience action planning related to climate change through a multisector approach. The framework was applied step by step to three cities—Barcelona, Bristol, and Lisbon—and their RAPs to climate change provide roadmaps for resilience, having the urban water cycle as the core. In these plans, urban services are included, given their interactions and contributions to city’s resilience. Addressed services are water supply, wastewater, storm water, waste, electric energy, and mobility.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 135-141 ◽  
Author(s):  
Z. Pilipovic ◽  
R. Taylor

In 1996, as part of Waitakere Council’s Water Cycle Strategy, a pressure standardisation programme to permanently lower the average supply pressure citywide was implemented with the aim of reducing water loss and water use. The experience gained during the 1994/95 Auckland water shortage had confirmed that there was considerable scope to reduce pressures in many areas. Since 1996 water pressures have been reduced in over 60% of the reticulated area of the city, with the average pressure reduced from 710 kPa to 540 kPa. As a result of this programme water loss from the network has been reduced, there has been a reduction in the frequency of mains breaks and it is likely that the life of water pipeline assets has been extended. Furthermore both pressure and demand management initiatives have reduced per capita water use in the city by more than 10%. A network computer model was used as a design tool to check the network under various pressure regimes and cost benefit analyses were carried out for various design scenarios. Fire sprinkler systems were checked as part of the design process. Minimum service standards were not reduced and in some cases pressures were actually increased. This paper covers the various aspects of the design, the implementation and the results of the pressure standardisation programme.


Author(s):  
Barley Norton

This chapter addresses the cultural politics, history and revival of Vietnamese court orchestras, which were first established at the beginning of the Nguyễn dynasty (1802–1945). Based on fieldwork in the city of Hue, it considers the decolonizing processes that have enabled Vietnamese court orchestras to take their place alongside other East Asian court orchestras as a display of national identity in the global community of nations. The metaphor of ‘orchestrating the nation’ is used to refer to the ways in which Vietnamese orchestras have been harnessed for sociopolitical ends in several historical periods. Court orchestras as heritage have recourse to a generic, precolonial past, yet they are not entirely uncoupled from local roots. Through a case-study of the revival of the Nam Giao Sacrifice, a ritual for ‘venerating heaven’, the chapter addresses the dynamics of interaction and exchange between staged performances of national heritage and local Buddhist and ancestor worship rituals. It argues that with growing concern about global climate change, the spiritual and ecological resonances of the Nam Giao Sacrifice have provided opportunities for the Party-state to reassert its position as the supreme guardian of the nation and its people.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yukiko Hirabayashi ◽  
Haireti Alifu ◽  
Dai Yamazaki ◽  
Yukiko Imada ◽  
Hideo Shiogama ◽  
...  

AbstractThe ongoing increases in anthropogenic radiative forcing have changed the global water cycle and are expected to lead to more intense precipitation extremes and associated floods. However, given the limitations of observations and model simulations, evidence of the impact of anthropogenic climate change on past extreme river discharge is scarce. Here, a large ensemble numerical simulation revealed that 64% (14 of 22 events) of floods analyzed during 2010-2013 were affected by anthropogenic climate change. Four flood events in Asia, Europe, and South America were enhanced within the 90% likelihood range. Of eight snow-induced floods analyzed, three were enhanced and four events were suppressed, indicating that the effects of climate change are more likely to be seen in the snow-induced floods. A global-scale analysis of flood frequency revealed that anthropogenic climate change enhanced the occurrence of floods during 2010-2013 in wide area of northern Eurasia, part of northwestern India, and central Africa, while suppressing the occurrence of floods in part of northeastern Eurasia, southern Africa, central to eastern North America and South America. Since the changes in the occurrence of flooding are the results of several hydrological processes, such as snow melt and changes in seasonal and extreme precipitation, and because a climate change signal is often not detectable from limited observation records, large ensemble discharge simulation provides insights into anthropogenic effects on past fluvial floods.


2021 ◽  
pp. 153851322098415
Author(s):  
L. Katie OConnell ◽  
Nisha Botchwey

Since the early days of the planning profession, city agencies relied on a public health crisis narrative as a rationale for mass displacement efforts that targeted black communities. Over time, as cities gentrified with white, middle-class residents, the narrative shifted toward the city as a place of health. This article compares Atlanta’s redevelopment narratives from urban renewal to its current citywide greenway project, the BeltLine, to understand how city officials utilized public health language to rationalize displacement and how the narratives ran counter to residents’ lived experience.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
Catarina C. Rolim ◽  
Patrícia Baptista

Several solutions and city planning policies have emerged to promote climate change and sustainable cities. The Sharing Cities program has the ambition of contributing to climate change mitigation by improving urban mobility, energy efficiency in buildings and reducing carbon emissions by successfully engaging citizens and fostering local-level innovation. A Digital Social Market (DSM), named Sharing Lisboa, was developed in Lisbon, Portugal, supported by an application (APP), enabling the exchange of goods and services bringing citizens together to support a common cause: three schools competing during one academic year (2018/2019) to win a final prize with the engagement of school community and surrounding community. Sharing Lisboa aimed to promote behaviour change and the adoption of energy-saving behaviours such as cycling and walking with the support of local businesses. Participants earned points that reverted to the cause (school) they supported. A total of 1260 users was registered in the APP, collecting more than 850,000 points through approximately 17,000 transactions. This paper explores how the DSM has the potential to become a new city service promoting its sustainable development. Furthermore, it is crucial for this concept to reach economic viability through a business model that is both profitable and useful for the city, businesses and citizens, since investment will be required for infrastructure and management of such a market.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 321
Author(s):  
Miltiadis Polidorou ◽  
Niki Evelpidou ◽  
Theodora Tsourou ◽  
Hara Drinia ◽  
Ferréol Salomon ◽  
...  

Akrotiri Salt Lake is located 5 km west of the city of Lemesos in the southernmost part of the island of Cyprus. The evolution of the Akrotiri Salt Lake is of great scientific interest, occurring during the Holocene when eustatic and isostatic movements combined with local active tectonics and climate change developed a unique geomorphological environment. The Salt Lake today is a closed lagoon, which is depicted in Venetian maps as being connected to the sea, provides evidence of the geological setting and landscape evolution of the area. In this study, for the first time, we investigated the development of the Akrotiri Salt Lake through a series of three cores which penetrated the Holocene sediment sequence. Sedimentological and micropaleontological analyses, as well as geochronological studies were performed on the deposited sediments, identifying the complexity of the evolution of the Salt Lake and the progressive change of the area from a maritime space to an open bay and finally to a closed salt lake.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4084
Author(s):  
Hassan Bazazzadeh ◽  
Peiman Pilechiha ◽  
Adam Nadolny ◽  
Mohammadjavad Mahdavinejad ◽  
Seyedeh sara Hashemi safaei

A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40% , respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.


1995 ◽  
Vol 6 (4) ◽  
pp. 310-334 ◽  
Author(s):  
William J. Folan ◽  
Joyce Marcus ◽  
Sophia Pincemin ◽  
María del Rosario Domínguez Carrasco ◽  
Laraine Fletcher ◽  
...  

In this paper we summarize more than a decade of interdisciplinary work at Calakmul, including (1) the mapping project, which has covered more than 30 km2; (2) the excavation project, which has uncovered major structures and tombs in the center of the city; (3) the epigraphic project, whose goal is to study the hieroglyphic texts and relate them to the archaeological evidence; (4) the analysis of the architecture, ceramics, and chipped stone to define sacred and secular activity areas and chronological stages; and (5) a focus on the ecology, hydrology, and paleoclimatology of Calakmul and its environs with the aim of understanding more fully its periods of development and decline.


Sign in / Sign up

Export Citation Format

Share Document