A development of RDF data transfer and query on Hadoop Framework

Author(s):  
Jutamard Kawises ◽  
Wiwat Vatanawood
2021 ◽  
Author(s):  
Pisit Makpaisit ◽  
chantana chantrapornchai

Abstract Resource Description Framework (RDF) is commonly used as a standard for data interchange on the web. The collection of RDF data sets can form a large graph which consume time to query. It is known that modern Graphic Processing Units (GPUs) can be employed to execute parallel programs in order to speedup the running time. In this paper, we propose a novel RDF data representation along with the query processing algorithm that is suitable for GPU processing. Since the main challenges of GPU architecture are the limited memory sizes, the memory transfer latency, and the vast number of GPU cores. Our system is designed to strengthen the use of GPU cores and reduce the effect of memory transfer. We propose a representation consists of indices and column-based RDF ID data that can save GPU memory requirement. The indices and pre-upload filtering technique are then applied to reduce the data transfer between host and GPU memory. We add the index swapping process to facilitate the sort and join the data with the given variable and add the pre-upload step to reduce the size of results’ storage, and the data transfer time. The experimental results show that our representation is about 35% smaller that the traditional NT format and 40% less compared to that of gStore. The query processing time can be speedup ranging from 1.95 to 397.03 when compared with RDF3X and gStore processing time with WatDiv testsuite. It achieves speedup 578.57 and 62.97 for LUBM benchmark when compared to RDF-3X and gStore. The analysis shows the query cases which can gain benefits from our approach.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Pisit Makpaisit ◽  
Chantana Chantrapornchai

AbstractResource Description Framework (RDF) is commonly used as a standard for data interchange on the web. The collection of RDF data sets can form a large graph which consumes time to query. It is known that modern Graphic Processing Units (GPUs) can be employed to execute parallel programs in order to speedup the running time. In this paper, we propose a novel RDF data representation along with the query processing algorithm that is suitable for GPU processing. Since the main challenges of GPU architecture are the limited memory sizes, the memory transfer latency, and the vast number of GPU cores. Our system is designed to strengthen the use of GPU cores and reduce the effect of memory transfer. We propose a representation consists of indices and column-based RDF ID data that can reduce the GPU memory requirement. The indexing and pre-upload filtering techniques are then applied to reduce the data transfer between the host and GPU memory. We add the index swapping process to facilitate the sorting and joining data process based on the given variable and add the pre-upload step to reduce the size of results’ storage, and the data transfer time. The experimental results show that our representation is about 35% smaller than the traditional NT format and 40% less compared to that of gStore. The query processing time can be speedup ranging from 1.95 to 397.03 when compared with RDF3X and gStore processing time with WatDiv test suite. It achieves speedup 578.57 and 62.97 for LUBM benchmark when compared to RDF-3X and gStore. The analysis shows the query cases which can gain benefits from our approach.


Author(s):  
M.F. Schmid ◽  
R. Dargahi ◽  
M. W. Tam

Electron crystallography is an emerging field for structure determination as evidenced by a number of membrane proteins that have been solved to near-atomic resolution. Advances in specimen preparation and in data acquisition with a 400kV microscope by computer controlled spot scanning mean that our ability to record electron image data will outstrip our capacity to analyze it. The computed fourier transform of these images must be processed in order to provide a direct measurement of amplitudes and phases needed for 3-D reconstruction.In anticipation of this processing bottleneck, we have written a program that incorporates a menu-and mouse-driven procedure for auto-indexing and refining the reciprocal lattice parameters in the computed transform from an image of a crystal. It is linked to subsequent steps of image processing by a system of data bases and spawned child processes; data transfer between different program modules no longer requires manual data entry. The progress of the reciprocal lattice refinement is monitored visually and quantitatively. If desired, the processing is carried through the lattice distortion correction (unbending) steps automatically.


1982 ◽  
Vol 21 (04) ◽  
pp. 181-186 ◽  
Author(s):  
M. A. A. Moussa

A drug information system (DARIS) has been created for handling reports on suspected drug reactions. The system is suitable for being run on desktop computers with a minimum of hardware requirements: 187 K read/write memory, flexible or hard disc drive and a thermal printer. The data base (DRUG) uses the QUERY and IMAGE programming capabilities for data entry and search. The data base to statistics link program (DBSTAT) enables data transfer from the data base into a file for statistical analysis and signalling suspected adverse drug reactions.The operational, medical and statistical aspects of the general population voluntary adverse drug reaction monitoring programme—recently initiated in the State of Kuwait—are described.


Author(s):  
B. G. Shadrin ◽  
◽  
D. E. Zachateyskiy ◽  
V. A. Dvoryanchikov Dvoryanchikov ◽  
◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 9-34
Author(s):  
Bobby Suryajaya

SKK Migas plans to apply end-to-end security based on Web Services Security (WS-Security) for Sistem Operasi Terpadu (SOT). However, there are no prototype or simulation results that can support the plan that has already been communicated to many parties. This paper proposes an experiment that performs PRODML data transfer using WS-Security by altering the WSDL to include encryption and digital signature. The experiment utilizes SoapUI, and successfully loaded PRODML WSDL that had been altered with WSP-Policy based on X.509 to transfer a SOAP message.


Author(s):  
S. K. Saravanan ◽  
G. N. K. Suresh Babu

In contemporary days the more secured data transfer occurs almost through internet. At same duration the risk also augments in secure data transfer. Having the rise and also light progressiveness in e – commerce, the usage of credit card (CC) online transactions has been also dramatically augmenting. The CC (credit card) usage for a safety balance transfer has been a time requirement. Credit-card fraud finding is the most significant thing like fraudsters that are augmenting every day. The intention of this survey has been assaying regarding the issues associated with credit card deception behavior utilizing data-mining methodologies. Data mining has been a clear procedure which takes data like input and also proffers throughput in the models forms or patterns forms. This investigation is very beneficial for any credit card supplier for choosing a suitable solution for their issue and for the researchers for having a comprehensive assessment of the literature in this field.


Author(s):  
M. B. Sergeev ◽  
V. A. Nenashev ◽  
A. M. Sergeev

Introduction: The problem of noise-free encoding for an open radio channel is of great importance for data transfer. The results presented in this paper are aimed at stimulating scientific interest in new codes and bases derived from quasi-orthogonal matrices, as a basis for the revision of signal processing algorithms.Purpose: Search for new code sequences as combinations of codes formed from the rows of Mersenne and Raghavarao quasi-orthogonal matrices, as well as complex and more efficient Barker — Mersenne — Raghavarao codes.Results: We studied nested code sequences derived from the rows of quasi-orthogonal cyclic matrices of Mersenne, Raghavarao and Hadamard, providing estimates for the characteristics of the autocorrelation function of nested Barker, Mersenne and Raghavarao codes, and their combinations: in particular, the ratio between the main peak and the maximum positive and negative “side lobes”. We have synthesized new codes, including nested ones, formed on the basis of quasi-orthogonal matrices with better characteristics than the known Barker codes and their nested constructions. The results are significant, as this research influences the establishment and development of methods for isolation, detection and processing of useful information. The results of the work have a long aftermath because new original code synthesis methods need to be studied, modified, generalized and expanded for new application fields.Practical relevance: The practical application of the obtained results guarantees an increase in accuracy of location systems, and detection of a useful signal in noisy background. In particular, these results can be used in radar systems with high distance resolution, when detecting physical objects, including hidden ones.


Sign in / Sign up

Export Citation Format

Share Document