Development of a Walking Promotion Device using Arm Swing Induced by Parametric Excitation : Second report: Design of second prototype

Author(s):  
Kazuki Yamada ◽  
Sho Yokota ◽  
Akihiro Matsumoto ◽  
Daisuke Chugo ◽  
Hiroshi Hashimoto
Author(s):  
K. Werner ◽  
M. Raab

Embodied cognition theories suggest a link between bodily movements and cognitive functions. Given such a link, it is assumed that movement influences the two main stages of problem solving: creating a problem space and creating solutions. This study explores how specific the link between bodily movements and the problem-solving process is. Seventy-two participants were tested with variations of the two-string problem (Experiment 1) and the water-jar problem (Experiment 2), allowing for two possible solutions. In Experiment 1 participants were primed with arm-swing movements (swing group) and step movements on a chair (step group). In Experiment 2 participants sat in front of three jars with glass marbles and had to sort these marbles from the outer jars to the middle one (plus group) or vice versa (minus group). Results showed more swing-like solutions in the swing group and more step-like solutions in the step group, and more addition solutions in the plus group and more subtraction solutions in the minus group. This specificity of the connection between movement and problem-solving task will allow further experiments to investigate how bodily movements influence the stages of problem solving.


2018 ◽  
Vol 14 (01) ◽  
pp. 23-28
Author(s):  
Jenjira Wanna ◽  
Sangthong Terathongkum ◽  
Varaporn Thipsuwannakool

Author(s):  
Daisey Vega ◽  
Christopher J. Arellano

Abstract Background Emphasizing the active use of the arms and coordinating them with the stepping motion of the legs may promote walking recovery in patients with impaired lower limb function. Yet, most approaches use seated devices to allow coupled arm and leg movements. To provide an option during treadmill walking, we designed a rope-pulley system that physically links the arms and legs. This arm-leg pulley system was grounded to the floor and made of commercially available slotted square tubing, solid strut channels, and low-friction pulleys that allowed us to use a rope to connect the subject’s wrist to the ipsilateral foot. This set-up was based on our idea that during walking the arm could generate an assistive force during arm swing retraction and, therefore, aid in leg swing. Methods To test this idea, we compared the mechanical, muscular, and metabolic effects between normal walking and walking with the arm-leg pulley system. We measured rope and ground reaction forces, electromyographic signals of key arm and leg muscles, and rates of metabolic energy consumption while healthy, young subjects walked at 1.25 m/s on a dual-belt instrumented treadmill (n = 8). Results With our arm-leg pulley system, we found that an assistive force could be generated, reaching peak values of 7% body weight on average. Contrary to our expectation, the force mainly coincided with the propulsive phase of walking and not leg swing. Our findings suggest that subjects actively used their arms to harness the energy from the moving treadmill belt, which helped to propel the whole body via the arm-leg rope linkage. This effectively decreased the muscular and mechanical demands placed on the legs, reducing the propulsive impulse by 43% (p < 0.001), which led to a 17% net reduction in the metabolic power required for walking (p = 0.001). Conclusions These findings provide the biomechanical and energetic basis for how we might reimagine the use of the arms in gait rehabilitation, opening the opportunity to explore if such a method could help patients regain their walking ability. Trial registration: Study registered on 09/29/2018 in ClinicalTrials.gov (ID—NCT03689647).


2021 ◽  
Vol 115 ◽  
pp. 110181
Author(s):  
Shernice A. Thomas ◽  
Daisey Vega ◽  
Christopher J. Arellano

Waterlines ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 349-352
Author(s):  
Angus McBride

Sports ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 37 ◽  
Author(s):  
Aaron Heishman ◽  
Brady Brown ◽  
Bryce Daub ◽  
Ryan Miller ◽  
Eduardo Freitas ◽  
...  

The purpose of the present investigation was to evaluate differences in Reactive Strength Index Modified (RSIMod) and Flight Time to Contraction Time Ratio (FT:CT) during the countermovement jump (CMJ) performed without the arm swing (CMJNAS) compared to the CMJ with the arm swing (CMJAS), while exploring the relationship within each variable between jump protocols. A secondary purpose sought to explore the relationship between RSIMod and FT:CT during both jump protocols. Twenty-two collegiate basketball players performed both three CMJNAS and three CMJAS on a force plate, during two separate testing sessions. RSIMod was calculated by the flight-time (RSIModFT) and impulse-momentum methods (RSIModIMP). CMJ variables were significantly greater during the CMJAS compared to CMJNAS (p < 0.001). There were large to very large correlations within each variable between the CMJAS and CMJNAS. There were significant positive correlations among RSIModFT, RSIModIMP, and FT:CT during both the CMJAS (r ≥ 0.864, p < 0.001) and CMJNAS (r ≥ 0.960, p < 0.001). These findings identify an increase in RSIMod or FT:CT during the CMJAS, that may provide independent information from the CMJNAS. In addition, either RSIMod or FT:CT may be utilized to monitor changes in performance, but simultaneous inclusion may be unnecessary.


Sign in / Sign up

Export Citation Format

Share Document