Maximum Power Tracking of Solar Panel using Modified Incremental Conductance Method

Author(s):  
Trias Andromeda ◽  
Betantya Nugroho ◽  
Susatyo Handoko ◽  
Azli Yahya ◽  
Hermawan ◽  
...  
2013 ◽  
Vol 760-762 ◽  
pp. 451-456 ◽  
Author(s):  
Neng Cao ◽  
Ya Jun Cao ◽  
Jiao Yu Liu

In order to improve the efficiency of photovoltaic generation as well as the power quality, grid-connected inverters for PV generation research was carried out for photovoltaic maximum power point tracking. Based on some current studies on the incremental conductance method, an advanced incremental conductance control algorithm was proposed, which can track maximum power point rapidly and accurately. The oscillation phenomenon, which exists near the maximum power point, was improved at a great extent, so to the efficiency of photovoltaic cells generation electricity. The inverter control system has an advantage in its high speed and flexibility by applying advanced control algorithm. And the source harmonic current is remarkably reduced. In addition, the power factor is enhanced and the power quality is improved. Finally, according to the principle of inverter control system and based on the analysis on the mathematical model of photovoltaic inverter, a simulation model of that is established based on MATLAB/SIMULINK.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. Abdulkadir ◽  
A. H. M. Yatim ◽  
S. T. Yusuf

This paper presents a control strategy proposed for power maximizing which is a critical mechanism to ensure power track is maximized. Many tracking algorithms have been proposed for this purpose. One of the more commonly used techniques is the incremental conductance method. In this paper, an improved particle swarm optimization- (IPSO-) based MPPT technique for photovoltaic system operating under varying environmental conditions is proposed. The approach of linearly decreasing scheme for weighting factor and cognitive and social parameter is modified. The proposed control scheme can overcome deficiency and accelerate convergence of the IPSO-based MPPT algorithm. The approach is not only capable of tracking the maximum power point under uniform insolation state, but also able to find the maximum power point under fast changing nonuniform insolation conditions. The photovoltaic systematic process with control schemes is created using MATLAB Simulink to verify the effectiveness with several simulations being carried out and then compared with the conventional incremental conductance technique. Lastly, the effectiveness of the intended techniques is proven using real data obtained form previous literature. With the change in insolation and temperature portrait, it produces exceptional MPPT maximization. This shows that optimum performance is achieved using the intended method compared to the typical method.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1512
Author(s):  
Mithun Madhukumar ◽  
Tonse Suresh ◽  
Mohsin Jamil

Photovoltaic (PV) systems have recently been recognized as a leading way in the production of renewable electricity. Due to the unpredictable changes in environmental patterns, the amount of solar irradiation and cell operating temperature affect the power generated by the PV system. This paper, therefore, discusses the grid-integrated PV system to extract maximum power from the PV array to supply load requirements and the supply surplus power to the AC grid. The primary design is to have maximum power point tracking (MPPT) of the non-uniformly irradiated PV array, conversion efficiency maximization, and grid synchronization. This paper investigates various MPPT control algorithms using incremental conductance method, which effectively increased the performance and reduced error, hence helped to extract solar array’s power more efficiently. Additionally, other issues of PV grid-connected system such as network stability, power quality, and grid synchronization functions were implemented. The control of the voltage source converter is designed in such a way that PV power generated is synchronous to the grid. This paper also includes a comparative analysis of two MPPT techniques such as incremental conductance (INC) and perturb-and-observe (P&O). Extensive simulation of various controllers has been conducted to achieve enhanced efficient power extraction, grid synchronization and minimal performance loss due to dynamic tracking errors, particularly under fast-changing irradiation in Matlab/Simulink. The overall results favour INC algorithm and meet the required standards.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kuo-Nan Yu ◽  
Chih-Kang Liao ◽  
Her-Terng Yau

This paper proposes a new type of variable fractional-order incremental conductance algorithm (VFOINC), combined with extenics variable step size (EVSS) control into the maximum power point tracking (MPPT) design for photovoltaic power systems. At the beginning of maximum power tracking, the fractional-order numberαis selected as 1; the good transient tracking characteristic of traditional incremental conductance method is used. When the maximum power point is approached, the fractional-order numberαis selected as variable fractional order; the curve profile ofαin fractional order is used to approximate, so that the system has good tracking effect in transient and steady states. The experimental and simulation results show that, compared with traditional incremental conductance method (INC) and fractional-order incremental conductance method (FOINC), this method has better MPPT effect.


2021 ◽  
Vol 9 (1) ◽  
pp. 179-190
Author(s):  
Sheilza Jaina, Megha Chambyal

Three main factors which affect the efficiency of any Photovoltaic system are, the efficiency of the Photovoltaic pane used, efficiency of the inverter used and efficiency of the maximum power point tracking (MPPT) algorithm used. MPPT techniques are widely used in the Photovoltaic (PV) system to extract the maximum power from the Photovoltaic system. MPPT aims that in any environmental conditions i.e for any irradiation or temperature, maximum possible energy is extracted from PV systems. In this paper, Perturb & Observe (P&O), Incremental conductance techniques of MPPT are implemented and analyzed. On the basis of the output voltage, power, current, duty cycle and efficiency of the boost converter, comparison of these techniques has been done. To extract the maximum power from the Photovoltaic system, Inverted-V Method has been developed and compared with Perturb & Observe, Incremental conductance method with the help of MATLAB Simulink software. In this paper, it has been concluded that Inverted V methods has more efficiency and performs better as compared to the other two methods. This paper could be beneficial as a quick reference for MPPT users and future research application for PV system.


2021 ◽  
Vol 54 (3) ◽  
pp. 395-402
Author(s):  
Giulio Lorenzini ◽  
Mehrdad Ahmadi Kamarposhti ◽  
Ahmed Amin Ahmed Solyman

Tracking maximum power in photovoltaic applications is considered a major issue. Because of the change in the output power of solar cells by changing the radiation and temperature, it is required to receive the maximum power from solar array to be achieved the maximum efficiency using maximum power tracking methods. A large number of the maximum power methods have been introduced so far, but each has difficulty in terms of tracking speed and accuracy, and in practice, they have not been able to improve both of these factors. Among the commonly used methods, the incremental conductance method has a good tracking speed and accuracy, but at the same time, it cannot reach both to a desirable value. In this paper, a new method is proposed based on the above method that improves the mentioned factors simultaneously to an acceptable limit. The result of the simulation confirms the correctness of the claim of the proposed method.


2019 ◽  
Vol 12 (1) ◽  
pp. 34-43
Author(s):  
Parween R.Kareem

Due to the urgent need to make maximum use of electrical power generated from the Photo-Voltaic System (PVS) solar panels, several techniques have been developed for this purpose. Maximum Power Point Tracking (MPPT) algorithm raises the efficiency of PVS’s. Simulation of the complete (PVS) possesses the ability of MPPT is present in this paper. The approved PVS consists of a PV array, DC-DC Boost Converter and MPPT algorithm using Incremental Conductance Method (INC). All parts of the system were simulated programmatically using MATLAB. The obtained Results showed the efficiency of the algorithm used to extract the maximum power regardless of changes in solar radiation and cell’s temperature


Sign in / Sign up

Export Citation Format

Share Document