Travel time prediction on urban networks based on combining rough set with support vector machine

Author(s):  
Yao Chen ◽  
Henk J. van Zuylen ◽  
Yan Qipeng
2015 ◽  
Vol 27 (4) ◽  
pp. 291-300 ◽  
Author(s):  
Shiquan Zhong ◽  
Juanjuan Hu ◽  
Shuiping Ke ◽  
Xuelian Wang ◽  
Jingxian Zhao ◽  
...  

Effective bus travel time prediction is essential in transit operation system. An improved support vector machine (SVM) is applied in this paper to predict bus travel time and then the efficiency of the improved SVM is checked. The improved SVM is the combination of traditional SVM, Grubbs’ test method and an adaptive algorithm for bus travel-time prediction. Since error data exists in the collected data, Grubbs’ test method is used for removing outliers from input data before applying the traditional SVM model. Besides, to decrease the influence of the historical data in different stages on the forecast result of the traditional SVM, an adaptive algorithm is adopted to dynamically decrease the forecast error. Finally, the proposed approach is tested with the data of No. 232 bus route in Shenyang. The results show that the improved SVM has good prediction accuracy and practicality.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Cong Bai ◽  
Zhong-Ren Peng ◽  
Qing-Chang Lu ◽  
Jian Sun

Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.


Logistics ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Nikolaos Servos ◽  
Xiaodi Liu ◽  
Michael Teucke ◽  
Michael Freitag

Accurate travel time prediction is of high value for freight transports, as it allows supply chain participants to increase their logistics quality and efficiency. It requires both sufficient input data, which can be generated, e.g., by mobile sensors, and adequate prediction methods. Machine Learning (ML) algorithms are well suited to solve non-linear and complex relationships in the collected tracking data. Despite that, only a minority of recent publications use ML for travel time prediction in multimodal transports. We apply the ML algorithms extremely randomized trees (ExtraTrees), adaptive boosting (AdaBoost), and support vector regression (SVR) to this problem because of their ability to deal with low data volumes and their low processing times. Using different combinations of features derived from the data, we have built several models for travel time prediction. Tracking data from a real-world multimodal container transport relation from Germany to the USA are used for evaluation of the established models. We show that SVR provides the best prediction accuracy, with a mean absolute error of 17 h for a transport time of up to 30 days. We also show that our model performs better than average-based approaches.


Transport ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 221-234
Author(s):  
Anil Kumar Bachu ◽  
Kranthi Kumar Reddy ◽  
Lelitha Vanajakshi

Real-time bus travel time prediction has been an interesting problem since past decade, especially in India. Popular methods for travel time prediction include time series analysis, regression methods, Kalman filter method and Artificial Neural Network (ANN) method. Reported studies using these methods did not consider the high variance situations arising from the varying traffic and weather conditions, which is very common under heterogeneous and lane-less traffic conditions such as the one in India. The aim of the present study is to analyse the variance in bus travel time and predict the travel time accurately under such conditions. Literature shows that Support Vector Machines (SVM) technique is capable of performing well under such conditions and hence is used in this study. In the present study, nu-Support Vector Regression (SVR) using linear kernel function was selected. Two models were developed, namely spatial SVM and temporal SVM, to predict bus travel time. It was observed that in high mean and variance sections, temporal models are performing better than spatial. An algorithm to dynamically choose between the spatial and temporal SVM models, based on the current travel time, was also developed. The unique features of the present study are the traffic system under consideration having high variability and the variables used as input for prediction being obtained from Global Positioning System (GPS) units alone. The adopted scheme was implemented using data collected from GPS fitted public transport buses in Chennai (India). The performance of the proposed method was compared with available methods that were reported under similar traffic conditions and the results showed a clear improvement.


Sign in / Sign up

Export Citation Format

Share Document