Nano-Engineered Polymeric Micelles for Drug Delivery to Resistant Tumor

Author(s):  
A. Lavasanifar
2020 ◽  
Vol 13 ◽  
Author(s):  
Rohit Bhatia ◽  
Amit Sharma ◽  
Raj Kumar Narang ◽  
Ravindra K. Rawal

: Cancer is one of the most serious health concerns in 21st century whose prevalence is beyond boundaries and can affect any organ of human beings. The conventional chemotherapeutic treatment strategies lack specificity to tumours and are associated with toxic effects on immune system and other organ systems. In the past decades, there has been a continuous progress in the development of smart nanocarrier systems for target specific delivery of drugs against variety of tumours including intracellular gene-specific targeting. These nanocarriers are able to recognize the tumour cells and deliver the therapeutic agent in fixed proportions causing no or very less harm to healthy cells. Nanosystems have modified physicochemical properties, improved bioavailability and long retention in blood which enhances their potency. A huge number of nanocarrier based formulations have been developed and are in clinical trials. Nanocarrier systems include polymeric micelles, liposomes, dendrimers, carbon nanotubes, gold nanoparticles, etc. Recent advancements in nanocarrier systems include mesoporous silica nanoparticles (MSNs), metal organic frame works and quantum dots. In the present review, various nanocarrier based drug delivery systems along with their applications in the management of cancer have been described with special emphasis on MSNs.


2018 ◽  
Vol 14 (5) ◽  
pp. 1842
Author(s):  
Xuelian Guo ◽  
Zhewen Yu ◽  
Rong Jin ◽  
Aoneng Cao

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Xu ◽  
Peixue Ling ◽  
Tianmin Zhang

Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs) can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1) protection of the loaded drug from the harsh environment of the GI tract, (2) release of the drug in a controlled manner at target sites, (3) prolongation of the residence time in the gut by mucoadhesion, and (4) inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.


2017 ◽  
Vol 60 ◽  
pp. 244-255 ◽  
Author(s):  
Jiao Guan ◽  
Zun-Qiang Zhou ◽  
Mao-Hua Chen ◽  
Hui-Yan Li ◽  
Da-Nian Tong ◽  
...  

2000 ◽  
Vol 205 (1-2) ◽  
pp. 165-172 ◽  
Author(s):  
In-Sook Kim ◽  
Young-Il Jeong ◽  
Chong-Su Cho ◽  
Sung-Ho Kim

2021 ◽  
Vol 18 ◽  
Author(s):  
Rohini Bhattacharya ◽  
Asha P. Johnson ◽  
Shailesh T. ◽  
Mohamed Rahamathulla ◽  
Gangadharappa H. V.

: Diabetes mellitus is found to be among the most suffered and lethal diseases for mankind. Diabetes mellitus type-1 is caused by the demolition of pancreatic islets responsible for the secretion of insulin. Insulin is the peptide hormone (anabolic] that regulates the metabolism of carbohydrates, fats, and proteins. Upon the breakdown of the natural process of metabolism, the condition leads to hyperglycemia (increased blood glucose levels]. Hyperglycemia demands outsourcing of insulin. The subcutaneous route was found to be the most stable route of insulin administration but faces patient compliance problems. Oral Insulin delivery systems are the patient-centered and innovative novel drug delivery system, eliminating the pain caused by the subcutaneous route of administration. Insulin comes in contact across various barriers in the gastrointestinal tract, which has been discussed in detail in this review. The review describes about the different bioengineered formulations, including microcarriers, nanocarriers, Self-Microemulsifying drug delivery systems (SMEDDs), Self-Nanoemulsifying drug delivery systems (SNEDDs), polymeric micelles, cochleates, etc. Surface modification of the carriers is also possible by developing ligand anchored bioconjugates. A study on evaluation has shown that the carrier systems facilitate drug encapsulation without tampering the properties of insulin. Carrier-mediated transport by the use of natural, semi-synthetic, and synthetic polymers have shown efficient results in drug delivery by protecting insulin from harmful environment. This makes the formulation readily acceptable for a variety of populations. The present review focuses on the properties, barriers present in the GI tract, overcome the barriers, strategies to formulate oral insulin formulation by enhancing the stability and bioavailability of insulin.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Swati Biswas

Tweetable abstract Micelles are nanocarriers for hydrophobic chemotherapeutic drugs. This editorial discusses the current status of preclinical micellar research and sheds light on the possibility of their clinical translation.


Sign in / Sign up

Export Citation Format

Share Document