A hybrid route planning algorithm of single aerial vehicle attacking multiple targets

Author(s):  
Quan Luo ◽  
Zhong Liu ◽  
Shi-Dong Qiao
Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5712
Author(s):  
Wojciech Stecz ◽  
Krzysztof Gromada

The paper presents the concept of planning the optimal trajectory of fixed-wing unmanned aerial vehicle (UAV) of a short-range tactical class, whose task is to recognize a set of ground objects as a part of a reconnaissance mission. Tasks carried out by such systems are mainly associated with an aerial reconnaissance using Electro-Optical/Infrared (EO/IR) systems and Synthetic Aperture Radars (SARs) to support military operations. Execution of a professional reconnaissance of the indicated objects requires determining the UAV flight trajectory in the close neighborhood of the target, in order to collect as much interesting information as possible. The paper describes the algorithm for determining UAV flight trajectories, which is tasked with identifying the indicated objectives using the sensors specified in the order. The presence of UAV threatening objects is taken into account. The task of determining the UAV flight trajectory for recognition of the target is a component of the planning process of the tactical class UAV mission, which is also presented in the article. The problem of determining the optimal UAV trajectory has been decomposed into several subproblems: determining the reconnaissance flight method in the vicinity of the currently recognized target depending on the sensor used and the required parameters of the recognition product (photo, film, or SAR scan), determining the initial possible flight trajectory that takes into account potential UAV threats, and planning detailed flight trajectory considering the parameters of the air platform based on the maneuver planning algorithm designed for tactical class platforms. UAV route planning algorithms with time constraints imposed on the implementation of individual tasks were used to solve the task of determining UAV flight trajectories. The problem was formulated in the form of a Mixed Integer Linear Problem (MILP) model. For determining the flight path in the neighborhood of the target, the optimal control algorithm was also presented in the form of a MILP model. The determined trajectory is then corrected based on the construction algorithm for determining real UAV flight segments based on Dubin curves.


Author(s):  
Hao Zhang ◽  
Lihua Dou ◽  
Chunxiao Cai ◽  
Bin Xin ◽  
◽  
...  

Unmanned aerial vehicles (UAVs) have been investigated proactively owing to their promising applications. A route planner is key to UAV autonomous task execution. Herein, a hybrid differential evolution (HDE) algorithm is proposed to generate a high-quality and feasible route for fixed-wing UAVs in complex three-dimensional environments. A multiobjective function is designed, and both the route length and risk are optimized. Multiple constraints based on actual situations are considered, including UAV mobility, terrain, forbidden flying areas, and interference area constraints. Inspired by the wolf pack search algorithm, the proposed HDE algorithm combines differential evolution (DE) with an approaching strategy to improve the search capability. Moreover, considering the dynamic properties of fixed-wing UAVs, the quadratic B-spline curve is used for route smoothing. The HDE algorithm is compared with a state-of-the-art UAV route planning algorithm, i.e., the modified wolf pack search algorithm, and the traditional DE algorithm. Several numerical experiments are performed, and the performance comparison of algorithms shows that the HDE algorithm demonstrates better performances in terms of solution quality and constraint-handling ability in complex three-dimensional environments.


2018 ◽  
Vol 06 (04) ◽  
pp. 251-266
Author(s):  
Phillip J. Durst ◽  
Christopher T. Goodin ◽  
Cindy L. Bethel ◽  
Derek T. Anderson ◽  
Daniel W. Carruth ◽  
...  

Path planning plays an integral role in mission planning for ground vehicle operations in urban areas. Determining the optimum path through an urban area is a well-understood problem for traditional ground vehicles; however, in the case of autonomous unmanned ground vehicles (UGVs), additional factors must be considered. For an autonomous UGV, perception algorithms rather than platform mobility will be the limiting factor in operational capabilities. For this study, perception was incorporated into the path planning process by associating sensor error costs with traveling through nodes within an urban road network. Three common perception sensors were used for this study: GPS, LIDAR, and IMU. Multiple set aggregation operators were used to blend the sensor error costs into a single cost, and the effects of choice of aggregation operator on the chosen path were observed. To provide a robust path planning ability, a fuzzy route planning algorithm was developed using membership functions and fuzzy rules to allow for qualitative route planning in the case of generalized UGV performance. The fuzzy membership functions were then applied to several paths through the urban area to determine what sensors were optimized in each path to provide a measure of the UGV’s performance capabilities. The research presented in this paper shows the impacts that sensing/perception has on ground vehicle route planning by demonstrating a fuzzy route planning algorithm constructed by using a robust rule set that quantifies these impacts.


Author(s):  
Katia Sarsembagieva ◽  
Georgios Gardikis ◽  
George Xilouris ◽  
Anastasios Kourtis

2006 ◽  
Vol 15 (05) ◽  
pp. 803-821 ◽  
Author(s):  
PING YAN ◽  
MINGYUE DING ◽  
CHANGWEN ZHENG

In this paper, the route-planning problems of Unmanned Aerial Vehicle (UAV) in uncertain and adversarial environment are addressed, including not only single-mission route planning in known a priori environment, but also the route replanning in partially known and mission-changeable environments. A mission-adaptable hybrid route-planning algorithm based on flight roadmap is proposed, which combines existing global and local methods (Dijkstra algorithm, SAS and D*) into a two-level framework. The environment information and constraints for UAV are integrated into the procedure of building flight roadmap and searching for routes. The route-planning algorithm utilizes domain-specific knowledge and operates in real time with near-optimal solution quality, which is important to uncertain and adversarial environment. Other planners do not provide all of the functionality, namely real-time planning and replanning, near-optimal solution quality, and the ability to model complex 3D constraints.


Sign in / Sign up

Export Citation Format

Share Document