Fast Imaging Method based on Partitioned Phase Compensation for near-field MIMO array

Author(s):  
Yang Yu ◽  
Lingbo Qiao ◽  
Yingxin Wang ◽  
Ziran Zhao
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karolina Dorozynska ◽  
Simon Ek ◽  
Vassily Kornienko ◽  
David Andersson ◽  
Alexandra Andersson ◽  
...  

AbstractFluorescence-based multispectral imaging of rapidly moving or dynamic samples requires both fast two-dimensional data acquisition as well as sufficient spectral sensitivity for species separation. As the number of fluorophores in the experiment increases, meeting both these requirements becomes technically challenging. Although several solutions for fast imaging of multiple fluorophores exist, they all have one main restriction; they rely solely on spectrally resolving either the excitation- or the emission characteristics of the fluorophores. This inability directly limits how many fluorophores existing methods can simultaneously distinguish. Here we present a snapshot multispectral imaging approach that not only senses the excitation and emission characteristics of the probed fluorophores but also all cross term combinations of excitation and emission. To the best of the authors’ knowledge, this is the only snapshot multispectral imaging method that has this ability, allowing us to even sense and differentiate between light of equal wavelengths emitted from the same fluorescing species but where the signal components stem from different excitation sources. The current implementation of the technique allows us to simultaneously gather 24 different spectral images on a single detector, from which we demonstrate the ability to visualize and distinguish up to nine fluorophores within the visible wavelength range.


2020 ◽  
Vol 1007 ◽  
pp. 105-110
Author(s):  
Xin Xin Wang ◽  
Cheng He ◽  
Pu Zhi Zhao ◽  
Yi Zheng ◽  
Shi Hao Jiang ◽  
...  

In this paper, a new ultrasonic phased array full focus imaging method based on oblique incidence is proposed to solve the problem of the non-destructive testing of the internal defects in the GIS (gas insulated switchgear) shell welds. By using wedge coupling, the measured weld is far away from the near-field range of the transducer, and the detection angle range can be increased by changing the propagation direction of the acoustic beam. Based on Snell's law, the propagation characteristics of the ultrasonic wave in the interface are studied. On the basis of the conventional ultrasonic array matrix and the full focus imaging algorithm, by introducing the energy attenuation calibration coefficient of the acoustic wave propagation through the wedge, the correction amplitude of the specific focus point p(x, z) is obtained, The non-destructive testing of weld defects of GIS shell in the spot is carried out, and the test results show that the qualitative and quantitative detection of the weld defects can be well realized by using this method.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Guangzhong Ma ◽  
Zijian Wan ◽  
Yunze Yang ◽  
Pengfei Zhang ◽  
Shaopeng Wang ◽  
...  

Abstract Detection and identification of proteins are typically achieved by analyzing protein size, charge, mobility and binding to antibodies, which are critical for biomedical research and disease diagnosis and treatment. Despite the importance, measuring these quantities with one technology and at the single-molecule level has not been possible. Here we tether a protein to a surface with a flexible polymer, drive it into oscillation with an electric field, and image the oscillation with a near field optical imaging method, from which we determine the size, charge, and mobility of the protein. We also measure antibody binding and conformation changes in the protein. The work demonstrates a capability for comprehensive protein analysis and precision protein biomarker detection at the single molecule level.


2002 ◽  
Vol 09 (01) ◽  
pp. 641-644 ◽  
Author(s):  
MOMOKO TANAKA ◽  
TETSUYA KAWACHI ◽  
MASATAKA KADO ◽  
NOBORU HASEGAWA ◽  
KOUTA SUKEGAWA ◽  
...  

The spatial profile of the transient collisional excitation Ni-like Ag X-ray laser in various plasma lengths was observed using the near field imaging method. The gain region was the size of 50 μm and 30–50 μm distant from the target surface. The shapes of the gain region were crescent shape or consisted of two spots.


2018 ◽  
Author(s):  
Guanzhong Ma ◽  
Hao Zhu ◽  
Zijian Wan ◽  
Yunze Yang ◽  
Shaopeng Wang ◽  
...  

AbstractProtein analysis has relied on electrophoresis, mass spectroscopy and immunoassay, which separate, detect and identify proteins based on the size, charge, mobility and binding to antibodies. However, measuring these quantities at the single molecule level has not been possible. We tether a protein to a surface with a flexible polymer, drive the protein into mechanical oscillation with an alternating electric field, and image the protein oscillation with a near field imaging method, from which we determine the size, charge, mobility of the protein. We also measure binding of antibodies to single proteins and ligand binding-induced conformational changes in single proteins. This work provides new capabilities for protein analysis and disease biomarker detection at the single molecule level.


Sign in / Sign up

Export Citation Format

Share Document