Performance improvement of machine learning via automatic discovery of facilitating functions as applied to a problem of symbolic system identification

Author(s):  
J. Koza ◽  
M.A. Keane ◽  
J.P. Rice
Automatica ◽  
2014 ◽  
Vol 50 (3) ◽  
pp. 657-682 ◽  
Author(s):  
Gianluigi Pillonetto ◽  
Francesco Dinuzzo ◽  
Tianshi Chen ◽  
Giuseppe De Nicolao ◽  
Lennart Ljung

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 318
Author(s):  
Merima Kulin ◽  
Tarik Kazaz ◽  
Eli De Poorter ◽  
Ingrid Moerman

This paper presents a systematic and comprehensive survey that reviews the latest research efforts focused on machine learning (ML) based performance improvement of wireless networks, while considering all layers of the protocol stack: PHY, MAC and network. First, the related work and paper contributions are discussed, followed by providing the necessary background on data-driven approaches and machine learning to help non-machine learning experts understand all discussed techniques. Then, a comprehensive review is presented on works employing ML-based approaches to optimize the wireless communication parameters settings to achieve improved network quality-of-service (QoS) and quality-of-experience (QoE). We first categorize these works into: radio analysis, MAC analysis and network prediction approaches, followed by subcategories within each. Finally, open challenges and broader perspectives are discussed.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Tobias Rückwald ◽  
Svenja Drücker ◽  
Daniel-André Dücker ◽  
Robert Seifried

Author(s):  
SHWETA MAHAJAN

There are plenty of social media webpages and platforms producing the textual data. These different kind of a data needs to be analysed and processed to extract meaningful information from raw data. Classification of text plays a vital role in extraction of useful information along with summarization, text retrieval. In our work we have considered the problem of news classification using machine learning approach. Currently we have a news related dataset which having various types of data like entertainment, education, sports, politics, etc. On this data we have applying classification algorithm with some word vectorizing techniques in order to get best result. The results which we got that have been compared on different parameters like Precision, Recall, F1 Score, accuracy for performance improvement.


Author(s):  
A. Chiuso ◽  
G. Pillonetto

Estimation of functions from sparse and noisy data is a central theme in machine learning. In the last few years, many algorithms have been developed that exploit Tikhonov regularization theory and reproducing kernel Hilbert spaces. These are the so-called kernel-based methods, which include powerful approaches like regularization networks, support vector machines, and Gaussian regression. Recently, these techniques have also gained popularity in the system identification community. In both linear and nonlinear settings, kernels that incorporate information on dynamic systems, such as the smoothness and stability of the input–output map, can challenge consolidated approaches based on parametric model structures. In the classical parametric setting, the complexity of the model (the model order) needs to be chosen, typically from a finite family of alternatives, by trading bias and variance. This (discrete) model order selection step may be critical, especially when the true model does not belong to the model class. In regularization-based approaches, model complexity is controlled by tuning (continuous) regularization parameters, making the model selection step more robust. In this article, we review these new kernel-based system identification approaches and discuss extensions based on nuclear and [Formula: see text] norms.


2020 ◽  
Author(s):  
Richard Boynton ◽  
Homayon Aryan ◽  
Walker Simon ◽  
Michael Balikhin

<p>This research develops forecast models of the spatiotemporal evolution of emissions throughout the inner magnetosphere between L=2-6 and at all MLT. The system identification, or machine learning, technique based on Nonlinear AutoRegressive Moving Average eXogenous (NARMAX) models is employed to deduce the forecasting models of the lower band chorus, Hiss, and magnetosonic waves using solar wind and geomagnetic indices as inputs. It is difficult to develop machine leaning based spatiotemporal models of the waves in the inner magnetosphere as the data is sparse and machine learning techniques require large amounts of data to deduce a model. To solve this problem, the spatial co-ordinates at the time of the measurements are included as inputs to the model along with time lags of the solar wind and geomagnetic indices, while the measurement of the waves by the Van Allen Probes are used as the output to train the models. The estimates of the resultant models are compared with separate data to the training data to assess the performance of the models. The models are then used to reconstruct the spatiotemporal waves over the inner magnetosphere, as the waves respond to changes in the solar wind and geomagnetic indices.  </p>


Sign in / Sign up

Export Citation Format

Share Document