An overlaid Hybrid-Duplex OFDMA system with partial frequency reuse

Author(s):  
Jung Min Park ◽  
Young Jin Sang ◽  
Young Ju Hwang ◽  
Kwang Soon Kim ◽  
Seong-Lyun Kim
2017 ◽  
Vol 96 (3) ◽  
pp. 3553-3568
Author(s):  
Wenping Bi ◽  
Xin Su ◽  
Limin Xiao ◽  
Shidong Zhou

Author(s):  
Anitha S Sastry ◽  
Akhila S

This article describes how a multi user cellular system insists on having increase in the spectral efficiency for the number of users and base stations. As far as cellular structures are concerned, the users at the edges experience inter cellular interference (ICI) than the users at the cell center. This is due to lack of resource allocation at cell edges. To improve the throughput at the edges a technique called Fractional Frequency Reuse (FFR) is employed. This article explores the Dynamic FFR(DFFR) in OFDMA system to improve the overall throughput.


2017 ◽  
Vol 26 (1) ◽  
pp. 359-368 ◽  
Author(s):  
S. Gajewski

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Saif Sabeeh ◽  
Krzysztof Wesołowski ◽  
Paweł Sroka

Cellular Vehicle-to-Everything communication is an important scenario of 5G technologies. Modes 3 and 4 of the wireless systems introduced in Release 14 of 3GPP standards are intended to support vehicular communication with and without cellular infrastructure. In the case of Mode 3, dynamic resource selection and semi-persistent resource scheduling algorithms result in a signalling cost problem between vehicles and infrastructure, therefore, we propose a means to decrease it. This paper employs Re-selection Counter in centralized resource allocation as a decremental counter of new resource requests. Furthermore, two new spectrum re-partitioning and frequency reuse techniques in Roadside Units (RSUs) are considered to avoid resource collisions and diminish high interference impact via increasing the frequency reuse distance. The two techniques, full and partial frequency reuse, partition the bandwidth into two sub-bands. Two adjacent RSUs apply these sub-bands with the Full Frequency Reuse (FFR) technique. In the Partial Frequency Reuse (PFR) technique, the sub-bands are further re-partitioned among vehicles located in the central and edge parts of the RSU coverage. The sub-bands assignment in the nearest RSUs using the same sub-bands is inverted concerning the current RSU to increase the frequency reuse distance. The PFR technique shows promising results compared with the FFR technique. Both techniques are compared with the single band system for different vehicle densities.


Sign in / Sign up

Export Citation Format

Share Document