Implementation of altitude measurement based on beam split in VHF radar

Author(s):  
Shilei Zhou ◽  
Baixiao Chen ◽  
Ruixing Yang ◽  
Minglei Yang
Keyword(s):  
2014 ◽  
Vol 35 (12) ◽  
pp. 2795-2801
Author(s):  
Jun You ◽  
Xian-rong Wan ◽  
Zi-ping Gong ◽  
Feng Cheng ◽  
Heng-yu Ke

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 900
Author(s):  
Tiegang Lin ◽  
Jin Xie ◽  
Yingjie Zhou ◽  
Yaqin Zhou ◽  
Yide Yuan ◽  
...  

Liquid crystal (LC) circular polarization gratings (PGs), also known as Pancharatnam–Berry (PB) phase deflectors, are diffractive waveplates with linearly changed optical anisotropy axes. Due to the high diffraction efficiency, polarization selectivity character, and simple fabrication process, photoalignment LC PGs have been widely studied and developed especially in polarization management and beam split. In this review paper, we analyze the physical principles, show the exposure methods and fabrication process, and present relevant promising applications in photonics and imaging optics.


2021 ◽  
Vol 13 (3) ◽  
pp. 522
Author(s):  
Dorota Jozwicki ◽  
Puneet Sharma ◽  
Ingrid Mann

Polar Mesospheric Summer Echoes (PMSE) are distinct radar echoes from the Earth’s upper atmosphere between 80 to 90 km altitude that form in layers typically extending only a few km in altitude and often with a wavy structure. The structure is linked to the formation process, which at present is not yet fully understood. Image analysis of PMSE data can help carry out systematic studies to characterize PMSE during different ionospheric and atmospheric conditions. In this paper, we analyze PMSE observations recorded using the European Incoherent SCATter (EISCAT) Very High Frequency (VHF) radar. The collected data comprises of 18 observations from different days. In our analysis, the image data is divided into regions of a fixed size and grouped into three categories: PMSE, ionosphere, and noise. We use statistical features from the image regions and employ Linear Discriminant Analysis (LDA) for classification. Our results suggest that PMSE regions can be distinguished from ionosphere and noise with around 98 percent accuracy.


1988 ◽  
Vol 36 (4) ◽  
pp. 423-428 ◽  
Author(s):  
H Rishbeth ◽  
AP van Eyken ◽  
B S Lanchester ◽  
T Turunen ◽  
J Röttger ◽  
...  
Keyword(s):  

1994 ◽  
Vol 14 (9) ◽  
pp. 139-148 ◽  
Author(s):  
U.-P. Hoppe ◽  
T.A. Blix ◽  
E.V. Thrane ◽  
F.-J. Lübken ◽  
J.Y.N. Cho ◽  
...  

2001 ◽  
Vol 19 (8) ◽  
pp. 975-984 ◽  
Author(s):  
D. Narayana Rao ◽  
M. V. Ratnam ◽  
T. N. Rao ◽  
S. V. B. Rao

Abstract. Long-term VHF radar (53 MHz with 3° beam-width) observations at Gadanki (13.5° N, 79.2° E), India, during the period from September 1995 to August 1999 are used to study monthly, seasonal and annual medians of vertical eddy diffusivity, K in the troposphere, lower stratosphere and mesosphere. First, the spectral width contribution due to non-turbulent effects has been removed for further analysis and the monthly, seasonal medians of K are calculated. The monthly median of K in the troposphere shows maximum and minimum in June-July and November-December, respectively. In general, large values of K are seen up to 10 km and then decrease with height. Larger values of K are observed during monsoon and post-monsoon than in winter and summer. In general, the maximum and minimum values of the annual median of K (in logarithmic values) in the troposphere are found to be 0.25 and - 1.3 m2 s-1 respectively. In the mesosphere, the monthly median of K shows maximum and minimum during June-July and November-December, respectively, similar to the lower atmosphere. The value of K in the mesosphere becomes larger and it increases with height up to 75 km and again decreases above that height. The maximum values are seen during the summer, followed by equinoxes and a minimum during the winter. In general, the maximum and minimum values of K (in logarithmic values) are found to be 0.7 and 0.3 m2 s-1, respectively, in the mesosphere. A comparison of Doppler spectral parameters in different beam directions shows anisotropy in both signal-to- noise ratio (SNR) and spectral widths in the mesosphere, whereas it shows isotropy in SNR and anisotropy in the spectral widths in troposphere and lower stratosphere.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides)


1999 ◽  
Vol 17 (4) ◽  
pp. 463-489 ◽  
Author(s):  
P. Prikryl ◽  
J. W. MacDougall ◽  
I. F. Grant ◽  
D. P. Steele ◽  
G. J. Sofko ◽  
...  

Abstract. A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0). The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of \\sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.Key words. Ionosphere (polar ionosphere). Magneto- spheric physics (magnetosphere-ionosphere interactions; polar wind-magnetosphere interactions).


Sign in / Sign up

Export Citation Format

Share Document