scholarly journals Studies of polar mesosphere summer echoes by VHF radar and rocket probes

1994 ◽  
Vol 14 (9) ◽  
pp. 139-148 ◽  
Author(s):  
U.-P. Hoppe ◽  
T.A. Blix ◽  
E.V. Thrane ◽  
F.-J. Lübken ◽  
J.Y.N. Cho ◽  
...  
2007 ◽  
Vol 25 (12) ◽  
pp. 2487-2496 ◽  
Author(s):  
E. Belova ◽  
P. Dalin ◽  
S. Kirkwood

Abstract. On 5 July 2005, simultaneous observations of Polar Mesosphere Summer Echoes (PMSE) were made using the EISCAT VHF (224 MHz) and UHF (933 MHz) radars located near Tromsø, Norway and the ALWIN VHF radar (53.5 MHz) situated on Andøya, 120 km SW of the EISCAT site. During the short interval from 12:20 UT until 12:26 UT strong echoes at about 84 km altitude were detected with all three radars. The radar volume reflectivities were found to be 4×10−13 m−1, 1.5×10−14 m−1 and 1.5×10−18 m−1 for the ALWIN, EISCAT-VHF and UHF radars, respectively. We have calculated the reflectivity ratios for each pair of radars and have compared them to ratios obtained from the turbulence-theory model proposed by Hill (1978a). We have tested different values of the turbulent energy dissipation rate ε and Schmidt number Sc, which are free parameters in the model, to try to fit theoretical reflectivity ratios to the experimental ones. No single combination of the parameters ε and Sc could be found to give a good fit. Spectral widths for the EISCAT radars were estimated from the spectra computed from the autocorrelation functions obtained in the experiment. After correction for beam-width broadening, the spectral widths are about 4 m/s for the EISCAT-VHF and 1.5–2 m/s for the UHF radar. However, according to the turbulence theory, the spectral widths in m/s should be the same for both radars. We also tested an incoherent scatter (IS) model developed by Cho et al. (1998), which takes into account the presence of charged aerosols/dust at the summer mesopause. It required very different sizes of particles for the EISCAT-VHF and UHF cases, to be able to fit the experimental spectra with model spectra. This implies that the IS model cannot explain PMSE spectra, at least not for monodisperse distributions of particles.


Radio Science ◽  
1992 ◽  
Vol 27 (3) ◽  
pp. 417-428 ◽  
Author(s):  
S. J. Franke ◽  
J. Röttger ◽  
C. LaHoz ◽  
C. H. Liu

2000 ◽  
Vol 18 (12) ◽  
pp. 1599-1612 ◽  
Author(s):  
P. B. Chilson ◽  
S. Kirkwood ◽  
I. Häggström

Abstract. During the summer of 1997 investigations into the nature of polar mesosphere summer echoes (PMSE) were conducted using the European incoherent scatter (EISCAT) VHF radar in Norway. The radar was operated in a frequency domain interferometry (FDI) mode over a period of two weeks to study the frequency coherence of the returned radar signals. The operating frequencies of the radar were 224.0 and 224.6 MHz. We present the first results from the experiment by discussing two 4-h intervals of data collected over two consecutive nights. During the first of the two days an enhancement of the FDI coherence, which indicates the presence of distinct scattering layers, was found to follow the lower boundary of the PMSE. Indeed, it is not unusual to observe that the coherence values are peaked around the heights corresponding to both the lower- and upper-most boundaries of the PMSE layer and sublayers. A Kelvin-Helmholtz mechanism is offered as one possible explanation for the layering structure. Additionally, our analysis using range-time-pseudocolor plots of signal-to-noise ratios, spectrograms of Doppler velocity, and estimates of the positions of individual scattering layers is shown to be consistent with the proposition that upwardly propagating gravity waves can become steepened near the mesopause.Key words: Ionosphere (polar ionosphere) · Meteorology and Atmospheric Dynamics (middle atmosphere dynamics) · Radio Science (Interferometry)


2010 ◽  
Vol 10 (10) ◽  
pp. 25081-25116 ◽  
Author(s):  
N. Kaifler ◽  
G. Baumgarten ◽  
J. Fiedler ◽  
R. Latteck ◽  
F.-J. Lübken ◽  
...  

Abstract. Polar Mesosphere Summer Echoes (PMSE) and Noctilucent Clouds (NLC) have been routinely measured at the ALOMAR research facility in Northern Norway (69° N, 16° E) by lidar and radar, respectively. 2900 h of lidar measurements by the ALOMAR Rayleigh/Mie/Raman lidar were combined with almost 18 000 h of radar measurements by the ALWIN VHF radar, all taken during the years 1999 to 2008, to study simultaneous and common-volume observations of both phenomena. PMSE and NLC are known from both theory and observations to be positively linked. We quantify the occurrences of PMSE and/or NLC and relations in altitude, especially with respect to the lower layer boundaries. The PMSE occurrence rate is with 75.3% considerably higher than the NLC occurrence rate of 19.5%. For overlapping PMSE and NLC observations, we confirm the coincidence of the lower boundaries and find a standard deviation of 1.26 km, hinting at very fast sublimation rates. However, 10.1% of all NLC measurements occur without accompanying PMSE. Comparison of occurrence rates with solar zenith angle reveals that NLC without PMSE mostly occur around midnight indicating that the ice particles were invisible to the radar due to the reduced electron density.


2008 ◽  
Vol 26 (12) ◽  
pp. 4013-4022 ◽  
Author(s):  
P. Hoffmann ◽  
M. Rapp ◽  
J. Fiedler ◽  
R. Latteck

Abstract. Polar Mesosphere Summer Echoes (PMSE) have been studied at Andenes (69° N, 16° E), Norway, using VHF radar observations since 1994. One remarkable feature of these observations is the fact that {during 50% of the time,} the radar echoes occur in the form of two or more distinct layers. In the case of multiple PMSE layers, statistical analysis shows that the lower layer occurs at a mean height of ~83.4 km, which is almost identical to the mean height of noctilucent clouds (NLC) derived from observation with the ALOMAR Rayleigh/Mie/Raman lidar at the same site. To investigate the layering processes microphysical model simulations under the influence of tidal and gravity waves were performed. In the presence of long period gravity waves, these model investigations predict an enhanced formation of multiple PMSE layer structures, where the lower layer is a consequence of the occurrence of the largest particles at the bottom of the ice cloud. This explains the coincidence of the lowermost PMSE layers and NLC. During periods with enhanced amplitudes of the semidiurnal tide, the observed NLC and PMSE show pronounced tidal structures comparable to the results of corresponding microphysical simulations. At periods with short period gravity waves there is a tendency for a decreasing occurrence of NLC and for variable weak PMSE structures.


2002 ◽  
Vol 54 (6) ◽  
pp. 691-698 ◽  
Author(s):  
Jann-Yenq Liu ◽  
Chen-Jeih Pan ◽  
Chien-Chih Lee

1997 ◽  
Vol 15 (8) ◽  
pp. 1028-1036 ◽  
Author(s):  
P. Czechowsky ◽  
R. Rüster

Abstract. The mobile SOUSY VHF Radar was operated in the summer of 1987 during the MAC/SINE campaign in northern Norway to study the polar mesosphere summer echoes (PMSE). Measurements of the spectral width indicate that two types of structures occur. In general mesospheric layers are bifurcated exhibiting a narrow spectral width and a well-defined aspect sensitivity. However, for about 10% of the observation time cells of enhanced turbulence characterized by extremely broad spectral widths appear predominantly in the upper sublayer above 86 km. Identification and separation of beam and shear broadening allows a determination of the turbulence-induced component of the spectral width. This case study reveals that during several events these cloud-like structures of enhanced turbulence move with an apparent velocity of several tens of meters per second which is almost identical with the phase trace velocity of simultaneously observed waves. Since, at that time, the Richardson number was less than a quarter, it was concluded that these turbulent cells were generated by a Kelvin-Helmholtz mechanism. The horizontal extent of these structures was calculated to be less than 40 km. A general relation between spectral width and echo power was not detected. The turbulent component of the spectral width was used to calculate typical values of the energy dissipation rate at times where narrow spectral width dominates and during periods of enhanced turbulence. In addition, the outer scale of the inertial subrange (buoyancy scale) was estimated. For the first time the occurrence and motion of this type of structures of enhanced spectral width is analyzed and discussed in detail.


Author(s):  
Camilo Ramos ◽  
Michael C. Kelley ◽  
Frank Djuth ◽  
Keith Groves ◽  
Yasuhiro Murayama

1996 ◽  
Vol 14 (12) ◽  
pp. 1317-1327 ◽  
Author(s):  
J. Bremer ◽  
P. Hoffmann ◽  
A. H. Manson ◽  
C. E. Meek ◽  
R. Rüster ◽  
...  

Abstract. Simultaneous observations of polar mesosphere summer echoes (PMSE) have been carried out during summer 1994 in northern Norway using three radars on different frequencies: the ALOMAR SOUSY radar at Andenes on 53.5 MHz, the EISCAT VHF radar at Tromsø on 224 MHz and the MF radar at Tromsø on 2.78 MHz. During the common measuring period in July/August 1994, PMSE could be detected at 224 and 53.5 MHz, and there are strong hints that PMSE also occur at 2.78 MHz. Reliable correlations between hourly backscattered power values indicate that the PMSE structures have zonal extensions of more than 130 km and can be detected at very different scales (half wavelength) between 0.67 (EISCAT VHF radar) and 54 m (MF radar). Using the wind values derived by the MF radar it can be shown that the mesospheric wind field influences the structure of PMSE. The diurnal variation of PMSE is strongly connected with tidal-wind components, whereas spatial differences of PMSE can partly be explained by the mean wind field.


Sign in / Sign up

Export Citation Format

Share Document