Altitude Measurement Based on Beam Split and Frequency Diversity in VHF Radar

2010 ◽  
Vol 46 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Baixiao Chen ◽  
Guanghui Zhao ◽  
Shouhong Zhang
2015 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Nur Farahiah Ibrahim ◽  
Zahari Abu Bakar ◽  
Azlina Idris

Channel estimation techniques for Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) based on comb type pilot arrangement with least-square error (LSE) estimator was investigated with space-time-frequency (STF) diversity implementation. The frequency offset in OFDM effected its performance. This was mitigated with the implementation of the presented inter-carrier interference self-cancellation (ICI-SC) techniques and different space-time subcarrier mapping. STF block coding in the system exploits the spatial, temporal and frequency diversity to improve performance. Estimated channel was fed into a decoder which combined the STF decoding together with the estimated channel coefficients using LSE estimator for equalization. The performance of the system was compared by measuring the symbol error rate with a PSK-16 and PSK-32. The results show that subcarrier mapping together with ICI-SC were able to increase the system performance. Introduction of channel estimation was also able to estimate the channel coefficient at only 5dB difference with a perfectly known channel.


2014 ◽  
Vol 35 (12) ◽  
pp. 2795-2801
Author(s):  
Jun You ◽  
Xian-rong Wan ◽  
Zi-ping Gong ◽  
Feng Cheng ◽  
Heng-yu Ke

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 900
Author(s):  
Tiegang Lin ◽  
Jin Xie ◽  
Yingjie Zhou ◽  
Yaqin Zhou ◽  
Yide Yuan ◽  
...  

Liquid crystal (LC) circular polarization gratings (PGs), also known as Pancharatnam–Berry (PB) phase deflectors, are diffractive waveplates with linearly changed optical anisotropy axes. Due to the high diffraction efficiency, polarization selectivity character, and simple fabrication process, photoalignment LC PGs have been widely studied and developed especially in polarization management and beam split. In this review paper, we analyze the physical principles, show the exposure methods and fabrication process, and present relevant promising applications in photonics and imaging optics.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. A. B. Abbasi ◽  
V. F. Fusco ◽  
O. Yurduseven ◽  
T. Fromenteze

AbstractThis paper presents a physical frequency-diverse multimode lens-loaded cavity, designed and used for the purpose of the direction of arrival (DoA) estimation in millimetre-wave frequency bands for 5G and beyond. The multi-mode mechanism is realized using an electrically-large cavity, generating spatio-temporally incoherent radiation masks leveraging the frequency-diversity principle. It has been shown for the first time that by placing a spherical constant dielectric lens (constant-ϵr) in front of the radiating aperture of the cavity, the spatial incoherence of the radiation modes can be enhanced. The lens-loaded cavity requires only a single lens and output port, making the hardware development much simpler and cost-effective compared to conventional DoA estimators where multiple antennas and receivers are classically required. Using the lens-loaded architecture, an increase of up to 6 dB is achieved in the peak gain of the synthesized quasi-random sampling bases from the frequency-diverse cavity. Despite the fact that the practical frequency-diverse cavity uses a limited subset of quasi-orthogonal modes below the upper bound limit of the number of theoretical modes, it is shown that the proposed lens-loaded cavity is capable of accurate DoA estimation. This is achieved thanks to the sufficient orthogonality of the leveraged modes and to the presence of the spherical constant-ϵr lens which increases the signal-to-noise ratio (SNR) of the received signal. Experimental results are shown to verify the proposed approach.


2021 ◽  
Vol 13 (3) ◽  
pp. 522
Author(s):  
Dorota Jozwicki ◽  
Puneet Sharma ◽  
Ingrid Mann

Polar Mesospheric Summer Echoes (PMSE) are distinct radar echoes from the Earth’s upper atmosphere between 80 to 90 km altitude that form in layers typically extending only a few km in altitude and often with a wavy structure. The structure is linked to the formation process, which at present is not yet fully understood. Image analysis of PMSE data can help carry out systematic studies to characterize PMSE during different ionospheric and atmospheric conditions. In this paper, we analyze PMSE observations recorded using the European Incoherent SCATter (EISCAT) Very High Frequency (VHF) radar. The collected data comprises of 18 observations from different days. In our analysis, the image data is divided into regions of a fixed size and grouped into three categories: PMSE, ionosphere, and noise. We use statistical features from the image regions and employ Linear Discriminant Analysis (LDA) for classification. Our results suggest that PMSE regions can be distinguished from ionosphere and noise with around 98 percent accuracy.


Sign in / Sign up

Export Citation Format

Share Document