A single-phase, zero-torque, drivetrain integrated on-board charger control method for plug-in hybrid and electric vehicles

Author(s):  
Murat Senol ◽  
Rik W. De Doncker
Author(s):  
Tuğçe Demirdelen ◽  
R. İlker Kayaalp ◽  
Mehmet Tümay

Bidirectional dc-dc converters are used lots of industrial areas such as electric vehicles, uninterruptable power supplies, fuel cells, solar panel cells as energy sources are searched in order to improve the quality of power at the transmission, distribution lines and other areas. The main contribution of this paper, applying the most common used control method on single phase isolated bidirectional full bridge dc-dc converter and comparing this control method (Extended Phase Shift – EPS) on efficiency way by with/without using snubber capacitors. In this paper, Isolated Bidirectional DC-DC Converter topology is modelled and controller algorithm is written by FORTRAN programming language. According to the results, it is observed that efficiency result of the converter, using snubber capacitors in the converter topology has higher performance than the snubberless system.


2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


Author(s):  
Cody L. Telford ◽  
Robert H. Todd

Since the early 1900’s demand for fuel efficient vehicles has motivated the development of electric and hybrid electric vehicles. Unfortunately, some components used in these vehicles are expensive and complex. Todays consumer electric vehicles use dangerously high voltage, expensive electronic controllers, complex battery management systems and AC motors. The goal of this research at BYU is to increase safety by lowering the operating voltage and decrease cost by eliminating expensive controllers and decrease the number of battery cells. This paper specifically examines the use of a Ward Leonard Motor Control system for use in a passenger vehicle. The Ward Leonard System provides an alternative control method to expensive and complex systems used today. A Control Factor metric was developed as a result of this research to measure the Ward Leonard System’s ability to reduce the size and cost of the electronic controller for application in an EV or HEV. A bench top model of the Ward Leonard system was tested validating the Control Factor metric. The Ward Leonard system is capable of reducing the controller size by 77% and potentially reducing its cost by this amount or more. This work also provides performance characteristics for automotive designers and offers several design alternatives for EV and HEV architectures allowing a reduction in voltage, the use of AC inverters, AC motors, expensive controllers and high cell count battery packs.


2015 ◽  
Vol 18 (3) ◽  
pp. 174-182 ◽  
Author(s):  
Minh Ngoc Vu ◽  
Minh Cao Ta

This paper presents a slip suppression controller using sliding mode control method for electric vehicles which aims to improve the control performance of Evs in both driving and braking mode. In this method, a sliding mode controller is designed to obtain the maximum driving force by suppressing the slip ratio. The numerical simulations for one wheel model under variations in mass of vehicle and road condition are performed and demonstrated to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document