Intelligent distributed local control unit for hydropower plant

Author(s):  
Chen Sining ◽  
Huang Jian ◽  
Wang Shanyong ◽  
Shi Chong ◽  
Chen Guoqing
2014 ◽  
Vol 496-500 ◽  
pp. 1685-1689
Author(s):  
Huai Feng Cui ◽  
Nan Chen

Multi-agent based active noise control (ANC) is investigated in this paper. An enclosure consisting of two flexible plates is discussed. The noise control problem is decomposed into several local control problems on the basis of the dominant structural modal. Each local control problem is solved by an intelligent structure, i.e. agent control unit (ACU). The ACU includes sensor, actuator and controller. The relationship among the ACUs is negotiated by a coordination object. The architecture of multi-agent based active control is established using the coordination object. The control system can work smoothly in dynamic environments. It has the flexibility and robustness. The simulation results indicate that the good control performances are attained.


Author(s):  
V.I. Zhulev ◽  
M.B. Kaplan

The advantage of complex magnetic therapy devices (MTD) is the possibility of forming magnetic fields that are complexly distributed in space and time, which provides focused treatment of a specific disease, taking into account the individual characteristics of the patient. To increase the throughput of the physiotherapy room, a solution is proposed for organizing the simultaneous treatment of several patients using one device. Within the framework of the study, an approach based on the use of a reconfigurable system was considered, in accordance with which the MTD is built in the form of a set of the same type of intelligent magnetotherapy cells (MTC) and a central control module. This structure is the basis of the hardware component of the MTC, designed for group magnetotherapy. The conceptual model of the MTC includes the following elements: a local control unit, a local interface module, a memory unit, an identification unit, a power interface unit, an inductor unit, and a control unit. The specified composition of MTC components, on the one hand, provides the possibility of autonomous operation of the cell, and on the other hand, it supports centralized control, diagnostics, and simultaneous start and stop of the magnetic field generation process. The main idea of the method for conducting group magnetotherapy is the generation by the central control module of a unified magnetotherapy technique formed on the basis of magnetotherapy techniques, each of which is selected taking into account the required individual treatment of a particular patient. Conventionally, the aggregate of MTC is divided into groups – field-forming systems, each of which is used to treat an individual patient. Each MFT operates in an autonomous mode, which is achieved due to the presence of a local control unit in the cell, which, through the local interface module, receives the data necessary for carrying out a magnetotherapy procedure, and after a group launch independently generates and controls the acting magnetic field. In addition, the analysis of the proposed solution is carried out in the work, as well as issues of possible technical implementation are considered. Thus, the advantage, determined by the autonomous mode of operation of the MTC, allows you to set the duration of the operation of each cell within the framework of the current magnetotherapy procedure, individually. As a result, at the end of a separate magnetotherapy procedure, the MTCs that were used for this procedure can be used to create a field-forming system for treating the next patient, without the need to wait for the end of all active magnetotherapy procedures. In the practical construction of an MTD intended for group magnetotherapy, it is recommended to use microcontrollers as control units, motor drivers as a power interface unit, and specialized DS2411 type microcircuits as an identification unit. One of the possible implementations can be a solution based on an Internet server, then it is recommended to choose Ethernet as the interface, and it is preferable to use the IP address of the MTC as the MTC identifier. The ideas and solutions considered in the framework of the task of implementing group magnetotherapy can be generalized and used for other physical fields used in physiotherapy.


2016 ◽  
Vol 112 ◽  
pp. 897-905 ◽  
Author(s):  
Vipal Rathod ◽  
Ronak Shah ◽  
Deepak Mandge ◽  
Rajvi Parmar ◽  
S.L. Rao

2014 ◽  
Vol 539 ◽  
pp. 606-610
Author(s):  
Hong Xia Wu ◽  
Jian Ping Jia ◽  
Ming Zhou

In this paper, the hydroelectric power station spillway in local control system is studied. The spillway is one of the most important buildings in reservoir hub, it used for drain the flood which is cant accommodate by planning capacity, and it can guarantee the safety of dam body. It is generally not work. In this paper, the spillway of monitor and control system for a hydropower plant as an example, a method of TSX PLC system of application in local control system was emphatically dissertated, it meets the production demand. The field experience shows the design of the system is reasonable, stable and reliable.


Author(s):  
N.S. Allen ◽  
R.D. Allen

Various methods of video-enhanced microscopy combine TV cameras with light microscopes creating images with improved resolution, contrast and visibility of fine detail, which can be recorded rapidly and relatively inexpensively. The AVEC (Allen Video-enhanced Contrast) method avoids polarizing rectifiers, since the microscope is operated at retardations of λ/9- λ/4, where no anomaly is seen in the Airy diffraction pattern. The iris diaphram is opened fully to match the numerical aperture of the condenser to that of the objective. Under these conditions, no image can be realized either by eye or photographically. Yet the image becomes visible using the Hamamatsu C-1000-01 binary camera, if the camera control unit is equipped with variable gain control and an offset knob (which sets a clamp voltage of a D.C. restoration circuit). The theoretical basis for these improvements has been described.


Author(s):  
W.G. Wier

A fundamentally new understanding of cardiac excitation-contraction (E-C) coupling is being developed from recent experimental work using confocal microscopy of single isolated heart cells. In particular, the transient change in intracellular free calcium ion concentration ([Ca2+]i transient) that activates muscle contraction is now viewed as resulting from the spatial and temporal summation of small (∼ 8 μm3), subcellular, stereotyped ‘local [Ca2+]i-transients' or, as they have been called, ‘calcium sparks'. This new understanding may be called ‘local control of E-C coupling'. The relevance to normal heart cell function of ‘local control, theory and the recent confocal data on spontaneous Ca2+ ‘sparks', and on electrically evoked local [Ca2+]i-transients has been unknown however, because the previous studies were all conducted on slack, internally perfused, single, enzymatically dissociated cardiac cells, at room temperature, usually with Cs+ replacing K+, and often in the presence of Ca2-channel blockers. The present work was undertaken to establish whether or not the concepts derived from these studies are in fact relevant to normal cardiac tissue under physiological conditions, by attempting to record local [Ca2+]i-transients, sparks (and Ca2+ waves) in intact, multi-cellular cardiac tissue.


2004 ◽  
Vol 171 (4S) ◽  
pp. 385-385 ◽  
Author(s):  
Carl K. Gjertson ◽  
Kevin P. Asher ◽  
Joshua D. Sclar ◽  
Aaron E. Katz ◽  
Erik T. Goluboff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document