scholarly journals Tracking Partially-Occluded Deformable Objects while Enforcing Geometric Constraints

Author(s):  
Yixuan Wang ◽  
Dale McConachie ◽  
Dmitry Berenson
2020 ◽  
Vol 6 (7) ◽  
pp. 61
Author(s):  
Connor Charles Ratcliffe ◽  
Ognjen Arandjelović

The problem posed by complex, articulated or deformable objects has been at the focus of much tracking research for a considerable length of time. However, it remains a major challenge, fraught with numerous difficulties. The increased ubiquity of technology in all realms of our society has made the need for effective solutions all the more urgent. In this article, we describe a novel method which systematically addresses the aforementioned difficulties and in practice outperforms the state of the art. Global spatial flexibility and robustness to deformations are achieved by adopting a pictorial structure based geometric model, and localized appearance changes by a subspace based model of part appearance underlain by a gradient based representation. In addition to one-off learning of both the geometric constraints and part appearances, we introduce a continuing learning framework which implements information discounting i.e., the discarding of historical appearances in favour of the more recent ones. Moreover, as a means of ensuring robustness to transient occlusions (including self-occlusions), we propose a solution for detecting unlikely appearance changes which allows for unreliable data to be rejected. A comprehensive evaluation of the proposed method, the analysis and discussing of findings, and a comparison with several state-of-the-art methods demonstrates the major superiority of our algorithm.


1989 ◽  
Vol 136 (2) ◽  
pp. 124
Author(s):  
Ming-Hong Chan ◽  
Hung-Tat Tsui

2003 ◽  
Vol 779 ◽  
Author(s):  
T. John Balk ◽  
Gerhard Dehm ◽  
Eduard Arzt

AbstractWhen confronted by severe geometric constraints, dislocations may respond in unforeseen ways. One example of such unexpected behavior is parallel glide in unpassivated, ultrathin (200 nm and thinner) metal films. This involves the glide of dislocations parallel to and very near the film/substrate interface, following their emission from grain boundaries. In situ transmission electron microscopy reveals that this mechanism dominates the thermomechanical behavior of ultrathin, unpassivated copper films. However, according to Schmid's law, the biaxial film stress that evolves during thermal cycling does not generate a resolved shear stress parallel to the film/substrate interface and therefore should not drive such motion. Instead, it is proposed that the observed dislocations are generated as a result of atomic diffusion into the grain boundaries. This provides experimental support for the constrained diffusional creep model of Gao et al.[1], in which they described the diffusional exchange of atoms between the unpassivated film surface and grain boundaries at high temperatures, a process that can locally relax the film stress near those boundaries. In the grains where it is observed, parallel glide can account for the plastic strain generated within a film during thermal cycling. One feature of this mechanism at the nanoscale is that, as grain size decreases, eventually a single dislocation suffices to mediate plasticity in an entire grain during thermal cycling. Parallel glide is a new example of the interactions between dislocations and the surface/interface, which are likely to increase in importance during the persistent miniaturization of thin film geometries.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Erez Freud ◽  
Andreja Stajduhar ◽  
R. Shayna Rosenbaum ◽  
Galia Avidan ◽  
Tzvi Ganel

AbstractThe unprecedented efforts to minimize the effects of the COVID-19 pandemic introduce a new arena for human face recognition in which faces are partially occluded with masks. Here, we tested the extent to which face masks change the way faces are perceived. To this end, we evaluated face processing abilities for masked and unmasked faces in a large online sample of adult observers (n = 496) using an adapted version of the Cambridge Face Memory Test, a validated measure of face perception abilities in humans. As expected, a substantial decrease in performance was found for masked faces. Importantly, the inclusion of masks also led to a qualitative change in the way masked faces are perceived. In particular, holistic processing, the hallmark of face perception, was disrupted for faces with masks, as suggested by a reduced inversion effect. Similar changes were found whether masks were included during the study or the test phases of the experiment. Together, we provide novel evidence for quantitative and qualitative alterations in the processing of masked faces that could have significant effects on daily activities and social interactions.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199332
Author(s):  
Xintao Ding ◽  
Boquan Li ◽  
Jinbao Wang

Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method (GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster and DGP-Faster increase the performance of the mean average precision.


2020 ◽  
pp. 1-11
Author(s):  
Guo Yunfeng ◽  
Li Jing

In order to improve the effect of the teaching method evaluation model, based on the grid model, this paper constructs an artificial intelligence model based on the grid model. Moreover, this paper proposes a hexahedral grid structure simplification method based on weighted sorting, which comprehensively sorts the elimination order of candidate base complexes in the grid with three sets of sorting items of width, deformation and price improvement. At the same time, for the elimination order of basic complex strings, this paper also proposes a corresponding priority sorting algorithm. In addition, this paper proposes a smoothing regularization method based on the local parameterization method of the improved SLIM algorithm, which uses the regularized unit as the reference unit in the local mapping in the SLIM algorithm. Furthermore, this paper proposes an adaptive refinement method that maintains the uniformity of the grid and reduces the surface error, which can better slow down the occurrence of geometric constraints caused by insufficient number of elements in the process of grid simplification. Finally, this paper designs experiments to study the performance of the model. The research results show that the model constructed in this paper is effective.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1467
Author(s):  
Muminjon Tukhtasinov ◽  
Gafurjan Ibragimov ◽  
Sarvinoz Kuchkarova ◽  
Risman Mat Hasim

A pursuit differential game described by an infinite system of 2-systems is studied in Hilbert space l2. Geometric constraints are imposed on control parameters of pursuer and evader. The purpose of pursuer is to bring the state of the system to the origin of the Hilbert space l2 and the evader tries to prevent this. Differential game is completed if the state of the system reaches the origin of l2. The problem is to find a guaranteed pursuit and evasion times. We give an equation for the guaranteed pursuit time and propose an explicit strategy for the pursuer. Additionally, a guaranteed evasion time is found.


Sign in / Sign up

Export Citation Format

Share Document