scholarly journals Fast-Tracker: A Robust Aerial System for Tracking Agile Target in Cluttered Environments

Author(s):  
Zhichao Han ◽  
Ruibin Zhang ◽  
Neng Pan ◽  
Chao Xu ◽  
Fei Gao
Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
H. S. Hewawasam ◽  
M. Yousef Ibrahim ◽  
Gayan Kahandawa ◽  
T. A. Choudhury

Abstract This paper presents a new algorithm to navigate robots in dynamically cluttered environments. The proposed algorithm uses basic concepts of space attraction (hence the term Agoraphilic) to navigate robots through dynamic obstacles. The new algorithm in this paper is an advanced development of the original Agoraphilic navigation algorithm that was only able to navigate robots in static environments. The Agoraphilic algorithm does not look for obstacles (problems) to avoid but rather for a free space (solutions) to follow. Therefore, it is also described as an optimistic navigation algorithm. This algorithm uses only one attractive force created by the available free space. The free-space concept allows the Agoraphilic algorithm to overcome inherited challenges of general navigation algorithms. However, the original Agoraphilic algorithm has the limitation in navigating robots only in static, not in dynamic environments. The presented algorithm was developed to address this limitation of the original Agoraphilic algorithm. The new algorithm uses a developed object tracking module to identify the time-varying free spaces by tracking moving obstacles. The capacity of the algorithm was further strengthened by the new prediction module. Future space prediction allowed the algorithm to make decisions considering future growing/diminishing free spaces. This paper also includes a bench-marking study of the new algorithm compared with a recently published APF-based algorithm under a similar operating environment. Furthermore, the algorithm was validated based on experimental tests and simulation tests.


Author(s):  
E. Ramanujam ◽  
S. Padmavathi

Falls are the leading cause of injuries and death in elderly individuals who live alone at home. The core service of assistive living technology is to monitor elders’ activities through wearable devices, ambient sensors, and vision systems. Vision systems are among the best solutions, as their implementation and maintenance costs are the lowest. However, current vision systems are limited in their ability to handle cluttered environments, occlusion, illumination changes throughout the day, and monitoring without illumination. To overcome these issues, this paper proposes a 24/7 monitoring system for elders that uses retroreflective tape fabricated as part of conventional clothing, monitored through low-cost infrared (IR) cameras fixed in the living environment. IR camera records video even when there are changes in illumination or zero luminance. For classification among clutter and occlusion, the tape is considered as a blob instead of a human silhouette; the orientation angle, fitted through ellipse modeling, of the blob in each frame allows classification that detects falls without pretrained data. System performance was tested using subjects in various age groups and “fall” or “non-fall” were detected with 99.01% accuracy.


2020 ◽  
Vol 53 (2) ◽  
pp. 5487-5492
Author(s):  
Daniel Ioan ◽  
Ionela Prodan ◽  
Sorin Olaru ◽  
Florin Stoican ◽  
Silviu-Iulian Niculescu

2020 ◽  
Vol 12 ◽  
pp. 175682932092452
Author(s):  
Liang Lu ◽  
Alexander Yunda ◽  
Adrian Carrio ◽  
Pascual Campoy

This paper presents a novel collision-free navigation system for the unmanned aerial vehicle based on point clouds that outperform compared to baseline methods, enabling high-speed flights in cluttered environments, such as forests or many indoor industrial plants. The algorithm takes the point cloud information from physical sensors (e.g. lidar, depth camera) and then converts it to an occupied map using Voxblox, which is then used by a rapid-exploring random tree to generate finite path candidates. A modified Covariant Hamiltonian Optimization for Motion Planning objective function is used to select the best candidate and update it. Finally, the best candidate trajectory is generated and sent to a Model Predictive Control controller. The proposed navigation strategy is evaluated in four different simulation environments; the results show that the proposed method has a better success rate and a shorter goal-reaching distance than the baseline method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haron M. Abdel-Raziq ◽  
Daniel M. Palmer ◽  
Phoebe A. Koenig ◽  
Alyosha C. Molnar ◽  
Kirstin H. Petersen

AbstractIn digital agriculture, large-scale data acquisition and analysis can improve farm management by allowing growers to constantly monitor the state of a field. Deploying large autonomous robot teams to navigate and monitor cluttered environments, however, is difficult and costly. Here, we present methods that would allow us to leverage managed colonies of honey bees equipped with miniature flight recorders to monitor orchard pollination activity. Tracking honey bee flights can inform estimates of crop pollination, allowing growers to improve yield and resource allocation. Honey bees are adept at maneuvering complex environments and collectively pool information about nectar and pollen sources through thousands of daily flights. Additionally, colonies are present in orchards before and during bloom for many crops, as growers often rent hives to ensure successful pollination. We characterize existing Angle-Sensitive Pixels (ASPs) for use in flight recorders and calculate memory and resolution trade-offs. We further integrate ASP data into a colony foraging simulator and show how large numbers of flights refine system accuracy, using methods from robotic mapping literature. Our results indicate promising potential for such agricultural monitoring, where we leverage the superiority of social insects to sense the physical world, while providing data acquisition on par with explicitly engineered systems.


Sign in / Sign up

Export Citation Format

Share Document