The Data Acquisition and Control Unit Design for Demand Side Low-Cost Customized SCADA

Author(s):  
Meer Shadman Shafkat Tanjim ◽  
Ahmed Mortuza Saleque ◽  
Md. Abdur Rahman
Author(s):  
Meer Shadman Shafkat Tanjim ◽  
Ashrafun Nushra Oishi ◽  
Ali Azam Sojib ◽  
Md. Bashir Ahmmad ◽  
Md. Shaiful Islam ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1486
Author(s):  
Laslo Tarjan ◽  
Ivana Šenk ◽  
Jelena Erić Obućina ◽  
Stevan Stankovski ◽  
Gordana Ostojić

Industry 4.0 is a paradigm that enhances industrial automation systems with the recent advances in the domain of the Internet of Things (IoT), gaining new possibilities and providing new services. Traditional industrial machines do not have IoT capabilities, and in order to integrate such a machine into Industry 4.0, there is a need for an intermediary device or system that communicates with the machine through its supported communication interfaces and protocols and forwards the communication to the global network. This paper presents the development and experimental validation of a low-cost hardware module that can easily integrate the machine’s existing control unit into the IoT and enable synchronization of the measurements and states of the variables of the machine and its environment with a cloud server. The developed module is universal, can connect to any control unit that is able to communicate through basic RS232 serial communication, and does not require the control unit to have any higher level communication protocol implemented. On the other end, the presented solution uses a dedicated smartphone application to provide remote monitoring and control of the machine through the cloud by using the synchronized variable states, as well as further possibilities for storing, processing, and analyzing the historical data from the system. The developed solution was experimentally validated on an experimental setup consisting of a conveyor belt driven by a three-phase asynchronous electromotor controlled by a programmable logic controller through a variable-frequency drive.


2012 ◽  
Vol 2 (1) ◽  
pp. 3
Author(s):  
Muhammad Arsalan Khan

Wireless Fire Security System increases the secu-rity against fire as compared to conventional fire security systems. Conventional fire security systems are wired and they usually contain smoke detectors and control panel. The control panel is sometimes hard to operate. It’s hard to understand the control panel and operation of security systems. In hospitals and other health care institutions high security against fire is required in order to protect the expensive equipments and chemicals. Every organization needs proper insurance and safety for their equipments and patients. Radio frequency based fire security system was designed to provide high securi-ty against fire with easy to use, hand-held portable control unit. Anyone can easily operate the portable receiver without additional training or knowledge. Wireless fire security system for hospitals is also very low cost device.


Author(s):  
Joby Antony ◽  
Basanta Mahato ◽  
Sachin Sharma ◽  
Gaurav Chitranshi

In the present IT age, we are in need of fully automated industrial system. To design of Data Acquisition System (DAS) and its control is a challenging part of any measurement, automation and control system applications. Advancement in technology is very well reflected and supported by changes in measurement and control instrumentation. To move to highspeed serial from Parallel bus architectures has become prevalent and among these Ethernet is the most preferred switched Serial bus, which is forward-looking and backwardcompatible. Great stride have been made in promoting Ethernet use for industrial networks and factory automation. The Web based distributed measurement and control is slowly replacing parallel architectures due to its non-crate architecture which reduces complexities of cooling, maintenance etc. for slow speed field processing. A new kind of expandable, distributed large I/O data acquisition system based on low cost microcontroller based electronic web server[1] boards has been investigated and developed in this paper, whose hardware boards use 8-bit RISC processor with Ethernet controller, and software platform use AVR-GCC for firmware and Python for OS independent man machine interface. This system can measure all kinds of electrical and thermal parameters such as voltage, current, thermocouple, RTD, and so on. The measured data can be displayed on web pages at different geographical locations, and at the same time can be transmitted through RJ-45 Ethernet network to remote DAS or DCS monitoring system by using HTTP protocol. A central embedded single board computer (SBC) can act as a central CPU to communicate between web servers automatically.


Sign in / Sign up

Export Citation Format

Share Document