smoke detectors
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 1)

Jurnal Tekno ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 51-61
Author(s):  
Muhammad Ruslan ◽  
M.Saleh Al-Amin ◽  
Emidiana Emidiana

Abstract   Fire is a phenomenon that occurs when a material reaches a critical temperature and reacts chemically with oxygen (for example) producing heat, flame, light, smoke, water vapor, carbon monoxide, carbon dioxide, or other products and effects. Fires can occur anywhere, be it in office buildings, residences or public facilities. As for other than in public areas, fires often occur, both in rooms and laboratories, the triggers are almost the same due to negligence and not being careful in using flammable tools. For this reason, the need for a fire detector with a detector system using an alarm so that once a fire occurs, all those in the building can find out through the detector with an alarm sound as a fire marker. In order to reduce casualties, the need for a sprinkler system to extinguish the fire, and can assist the officers or authorities in the building as soon as possible. From the above problems, this research will determine how many detectors and sprinklers are needed, as well as how much water volume, pump power, and ground water tank are needed. This type of research is quantitative research by direct observation of the object under study, then researchers measure the room one by one using a building meter. From the calculation results by taking a sample on the 1st floor, the number of detectors needed is 10 smoke detectors and 3 heat detectors, the number of sprinklers is 47, the volume of water needed is 846 m3, the pump power and ground water tank needed are hydraulic power. pump (HHP) 3,28621 kW, pump shaft power (BHP) 4.38 kW, pump electric power (P) 6 kW, diesel pump (PpD) 4 HP, jocky pump (PJk) 0.6 kW, capacity GWT ( QGWT) 44 m3.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehmet Masat ◽  
Mehmet Ertuğrul ◽  
Hakan Korul

Purpose From the beginning of aviation history, fire has been a serious problem for aircrafts. The purpose of this study is to provide a reference document on current risks and proposed reductions for smoke and fire incidents in commercial transport aircrafts. For this purpose, metal oxide carbon dioxide (CO2) detector was produced with the screen printing technique to detect CO2 and carbon monoxide gases from the sensors required to observe the occurrence of fire that may occur in the aircraft and to take the necessary steps to control it. Design/methodology/approach The screen printing technique was used as the gas sensor production technique for the produced sensor and tin oxide was used as the metal oxide in the produced samples. The samples produced were examined under the gases with specified gas detecting properties, and it was concluded that they can be used simultaneously with smoke detectors to increase the detection reliability and decrease the alarm time with the smoke detectors currently used in today's passenger aircrafts. Findings When the electrical characteristics of the sensor made were examined, it was observed that it meets the requirements of the Federal Aviation Administration and European Aviation Safety Agency standards (the fire should be detected within 1 min), and the false alarm situation experienced in the smoke sensors used today can be eliminated. Originality/value There is no other sensor than the smoke detectors that are used for fire detection in cargo section, lavatories and avionic compartment on aircrafts. With this study, the gas detecting feature of the produced samples was examined under the specified gases, and it was concluded that they can be used simultaneously with smoke detectors to increase detection reliability and decrease alarm time as compared to with the smoke detectors currently used in today's passenger aircrafts.


2021 ◽  
Vol 35 (4) ◽  
pp. 8-14
Author(s):  
Ga-Hyeon Lee ◽  
Sung-Eun Lee ◽  
Si-Kuk Kim ◽  
Seung-Chul Lee

To reduce the damage caused by fire detector malfunctions, we investigated the standards and literature pertaining to fire detectors in Korea. The domestic standards cite UL's technical specifications, which provide only the standards and types of combustible materials; however, additional research is needed because no facilities related to the experiments are investigated and no fire experiments have actually been conducted. In this study, we refer to UL 268, which is similar to the domestic standards, as well as detailed experimental conditions and methods to improve smoke detector performances; we also use wood as the combustion material from among the fire sources specified in UL 268. Experiments were conducted to measure the sensitization rates using an optical density meter and repeated to match the wood smoke profile standard provided in UL 268. Furthermore, we compared the smoke concentrations detected by the smoke detectors in the fire experiments with those from fire simulations using FDS software to confirm the detector characteristics. Through these comparisons, we show that this research could be used as preliminary data for performance testing of detectors using UL 268.


Author(s):  
Michael Keenan ◽  
Torsten Behrens ◽  
Stan Bravenec ◽  
Jason Davis ◽  
Angie Bowen ◽  
...  

Abstract Americium is a man-made metal produced in very small quantities in nuclear reactors. Americium-241 is one of the radioactive isotopes of americium and has commercial applications, including use in smoke detectors. This is a case report of an occupational inhalation of americium-241, treated with both effective external decontamination and the use of diethylenetriamine pentaacetate to promote decorporation. This experience is significant because of the potential for americium or similar radionuclides to be used in “dirty” bombs or other radiological dispersion devices to cause large-scale radioactive contamination.


Author(s):  
J. R. Parent ◽  
C. Witharana ◽  
M. Bradley

Abstract. Accurate maps of building interiors are needed to support location-based services, plan for emergencies, and manage facilities. However, suitable maps to meet these needs are not available for many buildings. Handheld LiDAR scanners provide an effective tool to collect data for indoor mapping but there are no well-established methods for classifying features in indoor point clouds. The goal of this research was to develop an efficient manual procedure for classifying indoor point clouds to represent features-of-interest.We used Paracosm’s PX-80 handheld LiDAR scanner to collect point cloud and image data for 11 buildings, which encompassed a variety of architectures. ESRI’s ArcGIS Desktop was used to digitize features that were easily identified in the point cloud and Paracosm’s Retrace was used to digitize features for which imagery was needed for efficient identification. We developed several tools in Python to facilitate the process. We focused on classifying 29 features-of-interest to public safety personnel including walls, doors, windows, fire alarms, smoke detectors, and sprinklers.The method we developed was efficient, accurate, and allowed successful mapping of features as small as a sprinkler head. Point cloud classification for a 14,000 m2 building took 20–40 hours, depending on building characteristics. Although the method is based on manual digitization, it provides a practical solution for indoor mapping using LiDAR. The methods can be applied in mapping a wide variety of features in indoor or outdoor environments.


Tehnika ◽  
2021 ◽  
Vol 76 (4) ◽  
pp. 529-533
Author(s):  
Radoje Jevtić

Smoke detectors generally present the most frequently used fire detectors. These detectors have great appliance because smoke presents the consequence of many fires. These detectors can be realized as point smoke detectors and linear smoke detectors, while special smoke detectors are used for special purposes. Their efficiency is the biggest in the cases where fuel material produces smaller or larger amounts of smoke. The use of smoke detectors in the form of linear smoke detectors is particularly significant in rooms with huge dimensions and huge ceiling height. This paper was written to present work principle of linear smoke detectors and their installation in objects related to valid standards (EN 54, BS, NPB 88-2001, VDE 088-2 and NFPA 72).


2020 ◽  
Vol 29 (5) ◽  
pp. 40-50
Author(s):  
I. R. Khasanov ◽  
A. V. Karpov ◽  
S. F. Lobova ◽  
N. V. Petrova

Introduction. The performance of a fire alarm needs to be analyzed to answer the question about its compliance with fire safety requirements. This type of research is frequently performed in the course of a forensic fire investigation. Therefore, it is necessary to identify conditions of fire escalation and safe evacuation of people to assess the fire alarm performance.Purposes and objectives. The purpose of this work is the numerical study of the impact, produced by mathematical models of combustion, characteristics of fire loads and locations of fire beds, on fire alarm performance. Methods. Fire dynamics was field modeled to achieve the goal of this research. The analysis of flame propagation was performed with regard for various fire bed locations to simulate the fire alarm operation.Results and discussion. The fulfillment of safe evacuation conditions for cases of irregular arrangement of smoke detectors was analyzed to develop and test the algorithm for the calculation of the evacuation start time. It is shown that the estimated time of fire detection depends on combustion models employed (their average or complex level), the size of the computational grid, fire load specifications and the location of the fire bed.Conclusions. It is shown that the results of the field modeling of fire propagation and detection time are influenced by combustion models used, fire load specifications and the location of the fire bed in relation to smoke detectors. If the fire alarm fails to perform its functions and, consequently, safe evacuation conditions are not fulfilled, it is necessary either to improve the combustion model or to compare the modeling results obtained for actual and standard smoke detector location patterns.


2020 ◽  
Vol 1 (2) ◽  
pp. 251-254
Author(s):  
Sindi Permata Sari ◽  
Oriza Candra ◽  
Jhefri Asmi

Lately, there are frequent fires caused by human factors. Because we cannot predict the process of fire in advance. And the delay in knowing the occurrence of a fire is very fatal to the safety of human life and property. With advances in technology, we can overcome fires by making early fire detection devices. With the presence of temperature and smoke detectors, we can detect fires as early as possible and be delivered quickly via alarms and SMS gateways. The main component of this fire detector is the Arduino Uno. This Arduino uno acts as the brain of the fire detection device. This tool works based on the detection of the temperature condition by the DHT11 temperature sensor, which is when the temperature is above normal, an alert notification will be sent via the SMS gateway and so will the MQ2 smoke and the buzzer will sound as a warning alarm.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6272
Author(s):  
Hyo-Yeon Jang ◽  
Cheol-Hong Hwang

The obscuration thresholds for various smoke detectors and combustibles, required as an input parameter in fire simulation, were measured to predict the accurate activation time of detectors. One ionization detector and nine photoelectric detectors were selected. A fire detector evaluator, which can uniformly control the velocity and smoke concentration, was utilized. Filter paper, liquid fuels, and polymer pellets were employed as smoke-generation combustibles. The nominal obscuration thresholds of the considered detectors were 15 %/m, but the ionization detectors activated at approximately 40 %/m and 16 %/m, respectively, on applying filter paper and kerosene. In contrast, the reverse obscuration thresholds were found quantitatively according to the combustibles in the photoelectric detector. This phenomenon was caused by differences in the color of the smoke particles according to the combustibles, which is explained by single-scattering albedo (ratio of light scattering to light extinction). The obscuration thresholds for liquid fuels (kerosene, heptane and toluene) as well as fire types of polymer plastic pellets were also measured for several photoelectric detectors. A database of obscuration thresholds was thereby established according to the detector and combustible types, and it is expected to provide useful information for predicting more accurate detector activation time and required safe egress time (REST).


Sign in / Sign up

Export Citation Format

Share Document