A safety evaluation method for heavy-duty CNC machine tools for the total life cycle based on an entropy weight method

Author(s):  
Guofa Li ◽  
Yongchao Huo ◽  
Jialong He ◽  
Zhaojun Yang ◽  
Jian Wang ◽  
...  
2020 ◽  
Vol 213 ◽  
pp. 03019
Author(s):  
Junqing Wang ◽  
Qinggui Cao ◽  
Xin Mi ◽  
Dan Li

To evaluate the safety performance of bolt support scientifically, the factors affecting bolt support are systematically analyzed, the comprehensive evaluation index system is established from four aspects: support parameters, quality of bolt and fittings, construction management and monitoring level, and the safety evaluation model of bolt support is constructed; the AHP and entropy weight method are combined to determine the weight of each index, and the safety evaluation system of bolt support based on AHPentropy weight method is established and its application program is developed. The safety evaluation method and application program proposed in this paper are applied to the safety evaluation of bolt support in a coal mine in Shanxi Province, and the results are in agreement with the actual situation. This article studies the correlation.


Author(s):  
Quanle Zou ◽  
Tiancheng Zhang ◽  
Wei Liu

In recent years, various large- and medium-sized shopping malls have been essential components of each city with the speed-up of China’s urbanization process and the improvement of residents’ living standard. A method for evaluating fire risk in shopping malls based on quantified safety checklist and structure entropy weight method was proposed according to related literatures as well as laws and regulations by analyzing the characteristics of fires occurring in shopping malls in recent years. At first, the factors influencing the fire risk in shopping malls were determined by carrying out on-site survey and visiting related organizations to construct an evaluation index system for fires occurring in shopping malls; afterwards, a quantified safety checklist composed of four parts (i.e. safety grade, grade description, scoring criterion and index quantification) was established based on related laws and regulations; subsequently, index weights were determined by utilizing structure entropy weight method, thus putting forward a method for assessing fire risk in shopping malls based on quantified safety checklist and structure entropy weight method. Eventually, the applicability of the evaluation method was validated exampled by Wal-Mart. The research result provides a theoretical basis for further improvement of the theoretical system for fire risk evaluation in shopping malls, and also exerts practical and guidance significance on timeous and effective early warning as well as prevention and control of building fires.


2021 ◽  
pp. 1-18
Author(s):  
Xiaoqing Huang ◽  
Zhilong Wang ◽  
Shihao Liu

In order to solve the problem of health evaluation of CNC machine tools, an evaluation method based on grey clustering analysis and fuzzy comprehensive evaluation was proposed. The health status grade of in-service CNC machine tools was divided, and the performance indicator system of CNC machine tools was constructed. On the above basis, the relative importance of each performance and its indicators were combined, and grey clustering analysis and fuzzy comprehensive evaluation was utilized to evaluate the health status of in-service CNC machine tools to determine their health grade. The proposed health status evaluation method was applied to evaluate the health level of an in-service gantry CNC machine that can be used for the machining propellers, and the results shown that the health status of the whole gantry CNC machine tool is healthy. The proposed evaluation method provides useful references for further in-depth research on the health status analysis and optimization of CNC machine tools.


1993 ◽  
Vol 59 (560) ◽  
pp. 1286-1291 ◽  
Author(s):  
Kazuhiro Kanzaki ◽  
Masaomi Tsutsumi ◽  
Liang Chen

2021 ◽  
Author(s):  
Lei Guo ◽  
Xiufen ZHANG

Abstract Partial destructive disassembly (PDD) is essential for end-of-life products to improve their automatic disassembly efficiency and reduce disassembly cost. A feasibility evaluation of the PDD is the key step to evaluate whether the PDD can be implemented. However, it has not been studied previously to our knowledge. To deal with this problem, a multi-granularity feasibility evaluation method is proposed. A multi-granularity feasibility evaluation model of the PDD was constructed based on the complex product’s hierarchical structure, which not only described the evaluation indices from the product level to the component level but also presented methods and rules to quantify them. 1Thus, disassembly entropy was introduced into the target group’s coarse granularity evaluation. The feasibility of the fine-grained index of the PDD for the component layer was constructed based on the product’s failure characteristic. The fine-grained index was calculated by the fuzzy trigonometric function and its weighting was obtained based on the structure entropy weight method. Thus, the results of the evaluation were used as feedback to guide the PDD process. Finally, a Passat engine case study illustrates the feasibility and effectiveness of the method.


2014 ◽  
Vol 551 ◽  
pp. 722-726
Author(s):  
Xin Cao

In order to evaluate coaches, this paper established the model of comprehensive evaluation based on analytic hierarchy process (AHP). Firstly, I establish the hierarchical structure of the system; Secondly, for researching the influence of time line horizon in analysis, I divided coaches into several groups by their career time and calculated the weights of indicators of each group using entropy weight method; Finally, calculate the weight between the criteria layer and objective layer. Female coach data is difficult to find, so I select 100 college basketball male coach data. Put the data into model and get a score. The score showed the final result which can give us a sort of reasonable coach list. This model can reduce the influence of different time periods for evaluation of the coach.


2020 ◽  
Vol 317 ◽  
pp. 03001
Author(s):  
Dan Prodan ◽  
Anca Bucuresteanu ◽  
Adrian Motomancea ◽  
Alina Ovanisof

In this paper, the authors present some of the theoretical and experimental research conducted on the occasion of rotary tables remanufacturing for CNC machine tools belonging to Boring and Milling Machines family. They give the constructive solutions applied on CNC machines and the specific systems of guiding, locking and driving. The authors present also the modifications required when passing from CC variant to CNC variant in terms of locking - indexing systems and hydraulic suspension systems. The paper presents different achievements but insists particularly on the remanufacture of the rotary table with useful area 1700x2000 mm with longitudinal travel of 1000 mm (MRD 1700x2000/1000).


Sign in / Sign up

Export Citation Format

Share Document