A robust force observer for robot manipulators subjected to external disturbance

Author(s):  
S. Etedali ◽  
H. A. Talebi ◽  
A. Doust Mohammadi
Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Rong Mei ◽  
ChengJiang Yu

This paper presents an adaptive neural output feedback control scheme for uncertain robot manipulators with input saturation using the radial basis function neural network (RBFNN) and disturbance observer. First, the RBFNN is used to approximate the system uncertainty, and the unknown approximation error of the RBFNN and the time-varying unknown external disturbance of robot manipulators are integrated as a compounded disturbance. Then, the state observer and the disturbance observer are proposed to estimate the unmeasured system state and the unknown compounded disturbance based on RBFNN. At the same time, the adaptation technique is employed to tackle the control input saturation problem. Utilizing the estimate outputs of the RBFNN, the state observer, and the disturbance observer, the adaptive neural output feedback control scheme is developed for robot manipulators using the backstepping technique. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis and the asymptotically convergent tracking error is obtained under the integrated effect of the system uncertainty, the unmeasured system state, the unknown external disturbance, and the input saturation. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed adaptive neural output feedback control scheme for uncertain robot manipulators.


Author(s):  
Ghania Debbache ◽  
Abdelhak Bennia ◽  
Noureddine Goléa

This paper proposes an adaptive control suitable for motion control of robot manipulators with structured and unstructured uncertainties. In order to design an adaptive robust controller, with the ability to compensate these uncertainties, we use neural networks (NN) that have the capability to approximate any nonlinear function over a compact space. In the proposed control scheme, we need not derive the linear formulation of robot dynamic equation and tune the parameters. To reduce the NNs complexity, we consider the properties of robot dynamics and the decomposition of the uncertainties terms. The proposed controller is robust against uncertainties and external disturbance. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.


2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094756
Author(s):  
Dong-hui Wang ◽  
Shi-jie Zhang

In this article, a robust adaptive tracking controller is developed for robot manipulators with uncertain dynamics using radial basis function neural network. The design of tracking control systems for robot manipulators is a highly challenging task due to external disturbance and the uncertainties in their dynamics. The improved radial basis function neural network is chosen to approximate the uncertain dynamics of robot manipulators and learn the upper bound of the uncertainty. The adaptive law based on the Lyapunov stability theory is used to solve the uniform final bounded problem of the radial basis function neural network weights, which guarantees the stability and the consistent bounded tracking error of the closed-loop system. Finally, the simulation results are provided to demonstrate the practicability and effectiveness of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hongjun Hu ◽  
Shungen Xiao ◽  
Haikuo Shen

To solve the problems of model uncertainties, dynamic coupling, and external disturbances, a modified linear active disturbance rejection controller (MLADRC) is proposed for the trajectory tracking control of robot manipulators. In the computer simulation, MLADRC is compared to the proportional-derivative (PD) controller and the regular linear active disturbance rejection controller (LADRC) for performance tests. Multiple uncertain factors such as friction, parameter perturbation, and external disturbance are sequentially added to the system to simulate an actual robot manipulator system. Besides, a two-degree-of-freedom (2-DOF) manipulator is constructed to verify the control performance of the MLADRC. Compared with the regular LADRC, MLADRC is significantly characterized by the addition of feedforward control of reference angular acceleration, which helps robot manipulators keep up with target trajectories more accurately. The simulation and experimental results demonstrate the superiority of the MLADRC over the regular LADRC for the trajectory tracking control.


Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Recep Burkan ◽  
Askin Mutlu

Summary For robot manipulators, there are two types of disturbances. One is model parametric uncertainty; the other is unmodelled parameters such as joint friction forces and external disturbances. Unmodelled joint frictions and external disturbances reduce performance in terms of positioning accuracy and repeatability. In order to compensate for unmodelled parameters, the design of a new controller is considered. First, the modelled and unmodelled parameters are included in a dynamic model. Then, based on the dynamic model, a new Lyapunov function is developed. After that, new nonlinear joint friction and external disturbance estimation laws are derived as an analytic solution from the Lyapunov function; thus, the stability of the closed system is guaranteed. Better values of the adaptive dynamic compensators can be extracted by fuzzy rules according to the tracking error. Limitations and knowledge about friction and external disturbances are not required for the design of the controller. The controller compensates for all possible model parameter uncertainties, all possible unknown joint frictions and external disturbances.


1990 ◽  
Author(s):  
Walter Grossman ◽  
Farshad Khorrami ◽  
Bernard Friedland

Sign in / Sign up

Export Citation Format

Share Document