Energy Consumption Analysis for the Limit Cycle Walking Biped Robots

Author(s):  
Sina Khodabakhsh ◽  
Behnam Miripour Fard ◽  
Ahmad Bagheri
2021 ◽  
Vol 11 (5) ◽  
pp. 2342
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li

Gait pattern generation has an important influence on the walking quality of biped robots. In most gait pattern generation methods, it is usually assumed that the torso keeps vertical during walking. It is very intuitive and simple. However, it may not be the most efficient. In this paper, we propose a gait pattern with torso pitch motion (TPM) during walking. We also present a gait pattern with torso keeping vertical (TKV) to study the effects of TPM on energy efficiency of biped robots. We define the cyclic gait of a five-link biped robot with several gait parameters. The gait parameters are determined by optimization. The optimization criterion is chosen to minimize the energy consumption per unit distance of the biped robot. Under this criterion, the optimal gait performances of TPM and TKV are compared over different step lengths and different gait periods. It is observed that (1) TPM saves more than 12% energy on average compared with TKV, and the main factor of energy-saving in TPM is the reduction of energy consumption of the swing knee in the double support phase and (2) the overall trend of torso motion is leaning forward in double support phase and leaning backward in single support phase, and the amplitude of the torso pitch motion increases as gait period or step length increases.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1800
Author(s):  
Linfei Hou ◽  
Fengyu Zhou ◽  
Kiwan Kim ◽  
Liang Zhang

The four-wheeled Mecanum robot is widely used in various industries due to its maneuverability and strong load capacity, which is suitable for performing precise transportation tasks in a narrow environment. While the Mecanum wheel robot has mobility, it also consumes more energy than ordinary robots. The power consumed by the Mecanum wheel mobile robot varies enormously depending on their operating regimes and environments. Therefore, only knowing the working environment of the robot and the accurate power consumption model can we accurately predict the power consumption of the robot. In order to increase the applicable scenarios of energy consumption modeling for Mecanum wheel robots and improve the accuracy of energy consumption modeling, this paper focuses on various factors that affect the energy consumption of the Mecanum wheel robot, such as motor temperature, terrain, the center of gravity position, etc. The model is derived from the kinematic and kinetic model combined with electrical engineering and energy flow principles. The model has been simulated in MATLAB and experimentally validated with the four-wheeled Mecanum robot platform in our lab. Experimental results show that the accuracy of the model reached 95%. The results of energy consumption modeling can help robots save energy by helping them to perform rational path planning and task planning.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3775 ◽  
Author(s):  
Khaled Bawaneh ◽  
Farnaz Ghazi Nezami ◽  
Md. Rasheduzzaman ◽  
Brad Deken

Healthcare facilities in the United States account for 4.8% of the total area in the commercial sector and are responsible for 10.3% of total energy consumption in this sector. The number of healthcare facilities increased by 22% since 2003, leading to a 21% rise in energy consumption and an 8% reduction in energy intensity per unit of area (544.8 kWh/m2). This study provides an analytical overview of the end-use energy consumption data in healthcare systems for hospitals in the United States. The energy intensity of the U.S. hospitals ranges from 640.7 kWh/m2 in Zone 5 (very hot) to 781.1 kWh/m2 in Zone 1 (very cold), with an average of 738.5 kWh/m2. This is approximately 2.6 times higher than that of other commercial buildings. High energy intensity in the healthcare facilities, particularly in hospitals, along with energy costs and associated environmental concerns make energy analysis crucial for this type of facility. The proposed analysis shows that U.S. healthcare facilities have higher energy intensity than those of most other countries, especially the European ones. This necessitates the adoption of more energy-efficient approaches to the infrastructure and the management of healthcare facilities in the United States.


2017 ◽  
Vol 90 (8-9) ◽  
pp. 1191-1204 ◽  
Author(s):  
Ping Wang ◽  
Jing Liu ◽  
Jinlong Lin ◽  
Chao-Hsien Chu

Sign in / Sign up

Export Citation Format

Share Document