Full Control of Quadrotor Unmanned Aerial Vehicle using Multivariable Proportional Integral Derivative Controller

Author(s):  
Nasyatul Hanani ◽  
Fazilah Syazwanadira ◽  
Nur Alyani Fakharulrazi ◽  
Fitri Yakub ◽  
Zainudin A. Rasid ◽  
...  
2018 ◽  
Vol 15 (2) ◽  
pp. 93 ◽  
Author(s):  
Muhammad Fajar ◽  
Ony Arifianto

The autopilot on the aircraft is developed based on the mode of motion of the aircraft i.e. longitudinal and lateral-directional motion. In this paper, an autopilot is designed in lateral-directional mode for LSU-05 aircraft. The autopilot is designed at a range of aircraft operating speeds of 15 m/s, 20 m/s, 25 m/s, and 30 m/s at 1000 m altitude. Designed autopilots are Roll Attitude Hold, Heading Hold and Waypoint Following. Autopilot is designed based on linear model in the form of state-space. The controller used is a Proportional-Integral-Derivative (PID) controller. Simulation results show the value of overshoot / undershoot does not exceed 5% and settling time is less than 30 second if given step command. Abstrak Autopilot pada pesawat dikembangkan berdasarkan pada modus gerak pesawat yaitu modus gerak longitudinal dan lateral-directional. Pada makalah ini, dirancang autopilot pada modus gerak lateral-directional untuk pesawat LSU-05. Autopilot dirancang pada range kecepatan operasi pesawat yaitu 15 m/dtk, 20 m/dtk, 25 m/dtk, dan 30 m/dtk dengan ketinggian 1000 m. Autopilot yang dirancang adalah Roll Attitude Hold, Heading Hold dan Waypoint Following. Autopilot dirancang berdasarkan model linier dalam bentuk state-space. Pengendali yang digunakan adalah pengendali Proportional-Integral-Derivative (PID). Hasil simulasi menunjukan nilai overshoot/undershoot tidak melebihi 5% dan settling time kurang dari 30 detik jika diberikan perintah step.


2012 ◽  
Vol 271-272 ◽  
pp. 427-431 ◽  
Author(s):  
Han Wei Hsiao ◽  
Sheng Heng Tung ◽  
Ming Hsiang Shih ◽  
Wen Pei Sung

In this study, a low-design-cost and long-endurance unmanned aerial vehicle (UAV) based on the simple microcontroller board and mini-airship technique is proposed. Many well developed positioning sensors, such as GPS, 3-axis Gyroscope, Gravity-sensor and Magnetometer are used. In addition, the control model of Proportional-Integral-Derivative controller is applied to accomplish the long endurance purpose. Such a low-cost design has the potential to accelerate the application of UAV in a variety of video monitoring fields.


TRANSIENT ◽  
2017 ◽  
Vol 6 (3) ◽  
pp. 323
Author(s):  
Muhammad Surya Sulila ◽  
Sumardi Sumardi ◽  
Munawar Agus Riyadi

Unmanned Aerial Vehicle (UAV) adalah pesawat tanpa awak yang dapat dikendalikan secara manual ataupun otomatis dari jarak jauh. Sistem navigasi UAV quadcopter salah satunya adalah membuat sistem kontrol quadcopter agar dapat stabil menghadap ke arah koordinat yang dituju dengan mengatur sudut putar sumbu vertikal (yaw) atau disebut navigasi bearing sehingga pada Penelitian ini dirancang sistem kontrol Proportional Integral Derivative self tuning Particle Swarm Optimization. Perancangan sistem navigasi bearing digunakan input berupa Global Position System untuk mengetahui koordinat quadcopter, sedangkan sensor kompas HMC5883L digunakan untuk mengetahui kondisi aktual sudut arah hadap quadcopter. Berdasarkan hasil pengujian respon sistem quadcopter, untuk dapat mengarah ke koordinat yang dituju dengan koordinat quadcopter tetap, settling time dicapai pada detik ke 6,4 dan error setelah settling time sebesar 5,4⁰. Berdasarkan pengujian dengan perubahan koordinat, didapatkan error rata-rata sebesar 7,9⁰. Berdasarkan pengujian dengan diberi gangguan didapatkan error offset rata-rata sebesar 1,89⁰ dan mencapai settling time pada detik ke 4,1. Batasan nilai self tuning PSO yang terbaik didapat pada nilai Kp = 0,15 sampai 0,3, Ki = 0,06 sampai 0,6, dan Kd = 0,005 sampai Kd = 0,1. Nilai koefisien PSO yang digunakan adalah C1 = 1,5,  C2 = 2 dan bobot inersia dari 0,7 sampai 1,2.


2018 ◽  
Vol 14 (1) ◽  
pp. 1-11
Author(s):  
Galih Irfan Firdaus

Roket merupakan sebuah peluru kendali atau suatu kendaraan terbang yang mendapatkan dorongan melalui reaksi roket secara cepat dengan bahan fluida dari keluaran mesin roket. Sistem Kendali Sirip Roket berbasis Mikrokontroller ATmega8 berguna untuk mengendalikan sirip roket khususnya bagian aileron.  Dibutuhkan komponen – komponen pendukung berupa Sensor Accelerometer, Sensor Gyroscope, ATmega8 dan Motor Servo. Alat pengendali sirip roket ini dapat digunakan untuk mengendalikan sirip roket bagian aileron pada saat posisi roket tidak stabil atau terjadi gerakan naik turun pada saat setelah diluncurkan, sehingga dapat menghasilkan penerbangan yang maksimal dalam mencapai sasaran.Perancangan yang  digunakan adalah jenis pengendalian dengan kontrol PID. PID (Proportional Integral Derivative controller) merupakan kontroller untuk menentukan presisi suatu sistem instrumentasi dengan karakteristik adanya umpan balik pada sistem tesebut. Pengontrol PID adalah pengontrol konvensional yang banyak dipakai dalam dunia industri. Karakteristik pengontrol PID sangat dipengaruhi oleh kontribusi besar dari ketiga parameter P, I dan D. Pemilihan konstanta Kp, Ki dan Kd akan mengakibatkan penonjolan sifat dari masing-masing elemen. Dalam perancangan sebuah sistem kendali menggunakan kontroller PID pada motor servo yang diharapkan mampu menggerakkan sirip naik dan sirip turun pada roket sehingga mampu menjaga kestabilan roket saat diluncurkan. Prosentase error pada proyek akhir ini adalah 0,5 %.Roket merupakan sebuah peluru kendali atau suatu kendaraan terbang yang mendapatkan dorongan melalui reaksi roket secara cepat dengan bahan fluida dari keluaran mesin roket. Sistem Kendali Sirip Roket berbasis Mikrokontroller ATmega8 berguna untuk mengendalikan sirip roket khususnya bagian aileron.  Dibutuhkan komponen – komponen pendukung berupa Sensor Accelerometer, Sensor Gyroscope, ATmega8 dan Motor Servo. Alat pengendali sirip roket ini dapat digunakan untuk mengendalikan sirip roket bagian aileron pada saat posisi roket tidak stabil atau terjadi gerakan naik turun pada saat setelah diluncurkan, sehingga dapat menghasilkan penerbangan yang maksimal dalam mencapai sasaran.Perancangan yang  digunakan adalah jenis pengendalian dengan kontrol PID. PID (Proportional Integral Derivative controller) merupakan kontroller untuk menentukan presisi suatu sistem instrumentasi dengan karakteristik adanya umpan balik pada sistem tesebut. Pengontrol PID adalah pengontrol konvensional yang banyak dipakai dalam dunia industri. Karakteristik pengontrol PID sangat dipengaruhi oleh kontribusi besar dari ketiga parameter P, I dan D. Pemilihan konstanta Kp, Ki dan Kd akan mengakibatkan penonjolan sifat dari masing-masing elemen. Dalam perancangan sebuah sistem kendali menggunakan kontroller PID pada motor servo yang diharapkan mampu menggerakkan sirip naik dan sirip turun pada roket sehingga mampu menjaga kestabilan roket saat diluncurkan. Prosentase error pada proyek akhir ini adalah 0,5 %.


Sign in / Sign up

Export Citation Format

Share Document