scholarly journals Real-time trajectory tracking of an unmanned aerial vehicle using a self-tuning fuzzy proportional integral derivative controller

2016 ◽  
Vol 8 (4) ◽  
pp. 252-268 ◽  
Author(s):  
Batıkan E Demir ◽  
Raif Bayir ◽  
Fecir Duran
TRANSIENT ◽  
2017 ◽  
Vol 6 (3) ◽  
pp. 323
Author(s):  
Muhammad Surya Sulila ◽  
Sumardi Sumardi ◽  
Munawar Agus Riyadi

Unmanned Aerial Vehicle (UAV) adalah pesawat tanpa awak yang dapat dikendalikan secara manual ataupun otomatis dari jarak jauh. Sistem navigasi UAV quadcopter salah satunya adalah membuat sistem kontrol quadcopter agar dapat stabil menghadap ke arah koordinat yang dituju dengan mengatur sudut putar sumbu vertikal (yaw) atau disebut navigasi bearing sehingga pada Penelitian ini dirancang sistem kontrol Proportional Integral Derivative self tuning Particle Swarm Optimization. Perancangan sistem navigasi bearing digunakan input berupa Global Position System untuk mengetahui koordinat quadcopter, sedangkan sensor kompas HMC5883L digunakan untuk mengetahui kondisi aktual sudut arah hadap quadcopter. Berdasarkan hasil pengujian respon sistem quadcopter, untuk dapat mengarah ke koordinat yang dituju dengan koordinat quadcopter tetap, settling time dicapai pada detik ke 6,4 dan error setelah settling time sebesar 5,4⁰. Berdasarkan pengujian dengan perubahan koordinat, didapatkan error rata-rata sebesar 7,9⁰. Berdasarkan pengujian dengan diberi gangguan didapatkan error offset rata-rata sebesar 1,89⁰ dan mencapai settling time pada detik ke 4,1. Batasan nilai self tuning PSO yang terbaik didapat pada nilai Kp = 0,15 sampai 0,3, Ki = 0,06 sampai 0,6, dan Kd = 0,005 sampai Kd = 0,1. Nilai koefisien PSO yang digunakan adalah C1 = 1,5,  C2 = 2 dan bobot inersia dari 0,7 sampai 1,2.


2018 ◽  
Vol 15 (2) ◽  
pp. 93 ◽  
Author(s):  
Muhammad Fajar ◽  
Ony Arifianto

The autopilot on the aircraft is developed based on the mode of motion of the aircraft i.e. longitudinal and lateral-directional motion. In this paper, an autopilot is designed in lateral-directional mode for LSU-05 aircraft. The autopilot is designed at a range of aircraft operating speeds of 15 m/s, 20 m/s, 25 m/s, and 30 m/s at 1000 m altitude. Designed autopilots are Roll Attitude Hold, Heading Hold and Waypoint Following. Autopilot is designed based on linear model in the form of state-space. The controller used is a Proportional-Integral-Derivative (PID) controller. Simulation results show the value of overshoot / undershoot does not exceed 5% and settling time is less than 30 second if given step command. Abstrak Autopilot pada pesawat dikembangkan berdasarkan pada modus gerak pesawat yaitu modus gerak longitudinal dan lateral-directional. Pada makalah ini, dirancang autopilot pada modus gerak lateral-directional untuk pesawat LSU-05. Autopilot dirancang pada range kecepatan operasi pesawat yaitu 15 m/dtk, 20 m/dtk, 25 m/dtk, dan 30 m/dtk dengan ketinggian 1000 m. Autopilot yang dirancang adalah Roll Attitude Hold, Heading Hold dan Waypoint Following. Autopilot dirancang berdasarkan model linier dalam bentuk state-space. Pengendali yang digunakan adalah pengendali Proportional-Integral-Derivative (PID). Hasil simulasi menunjukan nilai overshoot/undershoot tidak melebihi 5% dan settling time kurang dari 30 detik jika diberikan perintah step.


2012 ◽  
Vol 271-272 ◽  
pp. 427-431 ◽  
Author(s):  
Han Wei Hsiao ◽  
Sheng Heng Tung ◽  
Ming Hsiang Shih ◽  
Wen Pei Sung

In this study, a low-design-cost and long-endurance unmanned aerial vehicle (UAV) based on the simple microcontroller board and mini-airship technique is proposed. Many well developed positioning sensors, such as GPS, 3-axis Gyroscope, Gravity-sensor and Magnetometer are used. In addition, the control model of Proportional-Integral-Derivative controller is applied to accomplish the long endurance purpose. Such a low-cost design has the potential to accelerate the application of UAV in a variety of video monitoring fields.


2016 ◽  
Vol 40 (2) ◽  
pp. 550-564 ◽  
Author(s):  
Mustafa Sinasi Ayas ◽  
Ismail Hakki Altas ◽  
Erdinc Sahin

Human–robot interaction is inherently available and used actively in ankle rehabilitation robots. This interaction causes disturbances to be counteracted on the rehabilitation robots in order to reduce the side effects. This paper presents a fractional order proportional–integral–derivative controller to improve the trajectory tracking ability of a developed 2-degree of freedom parallel ankle rehabilitation robot subject to external disturbances. The parameters of the controller are optimally tuned by using both the cuckoo search algorithm and the particle swarm optimization algorithm. A traditional proportional–integral–derivative controller, which is also tuned using both of the algorithms, is designed to test the performance of the fractional order proportional–integral–derivative controller. The experimental results show that the optimally tuned FOPID controller improves the tracking performance of the ankle rehabilitation robot subject to external disturbances significantly and decreases the steady-state tracking errors compared to the optimally tuned PID controller.


2019 ◽  
Vol 26 (11-12) ◽  
pp. 976-988 ◽  
Author(s):  
Mustafa S Ayas ◽  
Erdinc Sahin ◽  
Ismail H Altas

Stewart platform or other parallel manipulators with a Stewart structure are commonly used in flight simulators, surgical operations, medical rehabilitation processes, machine tools, industrial applications, etc. Therefore, researchers have paid attention to position control of these manipulators in addition to their design and development process. In this study, a developed Stewart platform and its inverse kinematic analysis are presented first. Then, a model-free control scheme called a high order differential feedback controller scheme is designed for the Stewart platform in order to improve its trajectory tracking performance and robustness against to different reference trajectories. Real-time trajectory tracking experiments with varied reference trajectories are carried out to show the robustness and effectiveness of the high order differential feedback controller scheme compared to the traditional proportional–integral–derivative controller of which the parameters are optimally tuned. The obtained visual trajectory tracking results and numerical performance results based on error-based performance measurement metrics such as integral of absolute error, integral of squared error, and integral of time-weighted absolute error are provided for both the proposed high order differential feedback controller scheme and the optimal tuned proportional–integral–derivative controller. Experimental results show that the proposed high order differential feedback controller scheme is more robust than the proportional–integral–derivative controller. Furthermore, the high order differential feedback controller scheme has superiority in both transient and steady-state responses and even the parameters of the proportional–integral–derivative controller are optimally tuned.


Sign in / Sign up

Export Citation Format

Share Document