Preliminary Study on a Fiber Optic Extrinsic Fabry-Perot Interferometer Sensor of Acoustic Detection for Partial Discharge

Author(s):  
Si Wen-Rong ◽  
Fu Chen-Zhao ◽  
Gao Kai ◽  
Yuan Peng ◽  
Huang Hua
2021 ◽  
Vol 29 (11) ◽  
pp. 2613-2621
Author(s):  
Wen-rong SI ◽  
◽  
Chen-zhao FU ◽  
Jian BU ◽  
He-li NI ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 1975 ◽  
Author(s):  
Wenrong Si ◽  
Chenzhao Fu ◽  
Delin Li ◽  
Haoyong Li ◽  
Peng Yuan ◽  
...  

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Jiamin Chen ◽  
Chenyang Xue ◽  
Yongqiu Zheng ◽  
Jiandong Bai ◽  
Xinyu Zhao ◽  
...  

The ideal development direction of the fiber-optic acoustic sensor (FOAS) is toward broadband, a high sensitivity and a large dynamic range. In order to further promote the acoustic detection potential of the Fabry–Pérot etalon (FPE)-based FOAS, it is of great significance to study the acoustic performance of the FOAS with the quality (Q) factor of FPE as the research objective. This is because the Q factor represents the storage capability and loss characteristic of the FPE. The three FOASs with different Q factors all achieve a broadband response from 20 Hz to 70 kHz with a flatness of ±2 dB, which is consistent with the theory that the frequency response of the FOAS is not affected by the Q factor. Moreover, the sensitivity of the FOAS is proportional to the Q factor. When the Q factor is 1.04×106, the sensitivity of the FOAS is as high as 526.8 mV/Pa. Meanwhile, the minimum detectable sound pressure of 347.33 μPa/Hz1/2  is achieved. Furthermore, with a Q factor of 0.27×106, the maximum detectable sound pressure and dynamic range are 152.32 dB and 107.2 dB, respectively, which is greatly improved compared with two other FOASs. Separately, the FOASs with different Q factors exhibit an excellent acoustic performance in weak sound detection and high sound pressure detection. Therefore, different acoustic detection requirements can be met by selecting the appropriate Q factor, which further broadens the application range and detection potential of FOASs.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2312
Author(s):  
Shuchao Wang ◽  
Weigen Chen

This article presents an extrinsic fiber-optic acoustic sensor applied for partial discharge (PD) detection in air. A Fabry–Perot (F-P) cavity consisting of a single-mode fiber (SMF) and a graphene oxide (GO) film, whose thickness and effective vibration diameter are approximately 500 nm and 4.377 mm, respectively, is used as this sensing core, and the manufacturing process of GO diaphragms and this sensing probe is illustrated to be simple and controllable. Performance tests indicate that this proposed sensor maintains a linear acoustic-pressure response and a flat frequency response in the range of 200 Hz to 20 kHz, while being an omnidirectional sensor and having high working stability during a ten-day test period. Additionally, PD detection results show that the minimum PD size detected by this proposed sensor in air was approximately 100 pC, which demonstrates that this proposed sensor can achieve high-sensitivity PD detection in air.


2021 ◽  
Vol 53 (5) ◽  
Author(s):  
D. Jauregui-Vazquez ◽  
M. E. Gutierrez-Rivera ◽  
D. F. Garcia-Mina ◽  
J. M. Sierra-Hernandez ◽  
E. Gallegos-Arellano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document