An Ideal Proportional Navigation Guidance system for moving object interception-robotic experiments

Author(s):  
J.M. Borg ◽  
M. Mehrandezh ◽  
R.G. Fenton ◽  
B. Benhabib
2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Kaiwei Chen ◽  
Qunli Xia ◽  
Xiao Du ◽  
Yuemin Yao

This study analyzes the effects of disturbance rejection and radome error on the stability of guidance systems. First, disturbance rejection rate transfer function (DRRTF) models are established. Second, the Lyapunov stability of a proportional navigation guidance system is proposed. The passivity theorems are introduced for the analysis of the Lyapunov stability of the nonlinear time-varying system. Finally, the influence of the different DRRTF models on the stability of the guidance system is analyzed by mathematical simulations. The simulation results indicate that the stable boundary of the guidance system varies and its tolerance to disturbance differs significantly for various disturbance torque types and radome slope.


Author(s):  
Mingyan Li ◽  
Cheng-Chew Lim

AbstractWe analyse the performance of the additive observable proportional navigation guidance system, which is well-suited for low-cost homing missiles with bearings-only measurements. Closed-form solutions are derived for both manoeuvring and non-manoeuvring targets. Guidelines on how to select the navigation constants of the control law are presented. We show that the additive observable proportional navigation guidance system can cover a larger capture area than can a conventional proportional navigation system.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yao Yang ◽  
Yang Xu ◽  
Pei Wang

To explore the influence of the trace point step-jump behavior on a terminal guidance system, an analysis is performed from the line-of-sight rate (LOS rate) and guidance accuracy views for designing an anti-step-jump guidance law. First, the linear terminal guidance model under the trace point jump circumstance is constructed, and then the fundamental reason for the miss distance is investigated by deriving the upper bound of the LOS rate at the initial step-jump moment. Following this, the novel proposed analytical differential adjoint model is established with the adjoint method, and its validity is demonstrated comparing with the numeric derivative model. Based on the adjoint model, the effects of the ratio coefficient, the time constant, and the jump amplitude on the guidance accuracy are explored. Finally, a novel anti-step-jump guidance law is designed to shorten the recovery time of the overload. The simulations have shown that the faster recovery time and higher accuracy are achieved in comparison with the proportional navigation guidance, optimal guidance, and adaptive sliding mode guidance.


2019 ◽  
Vol 123 (1262) ◽  
pp. 464-483
Author(s):  
X.L. Ai ◽  
L.L. Wang ◽  
Y.C. Shen

ABSTRACTThis study focuses on the co-operative salvo attack problem of multiple missiles against a stationary target under jointly connected switching topologies subject to time-varying communication delays. By carefully exploring certain features of the typical pure proportional navigation guidance law, a two-stage distributed guidance scheme is proposed without any information on time-to-go in this study to realise the simultaneous attack of multiple missiles. In the first guidance stage, a co-operative guidance law is proposed using local neighbouring communications only to achieve consensus on range-to-go and heading error to provide favourable initial conditions for the latter phase, in which switching topologies and time-varying communication delays are taken into account when obtaining sufficient conditions of consensus in terms of linear matrix inequalities. Then, missiles disconnect from each other and are guided individually by the typical pure proportional navigation guidance law with the same navigation gain to realise salvo attack in the second guidance phase. Finally, numerical simulations are carried out to clearly validate the theoretical results.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Sijiang Chang ◽  
Shengfu Chen

In a bid to take advantage of natural characteristics of the proportional navigation guidance (PNG) in practical engineering, the PNG-based impact time control guidance (ITCG) continues to be a popular alternative for achieving the desired impact time of a missile. For most such ITCG, the performance is dependent on the accuracy of the time-to-go estimation. Along the lines of the development of PNG-based ITCG in earlier studies, a nonsingular ITCG is proposed on the basis of nonlinear formulations. It is demonstrated that, by theoretical analysis and numerical simulation, this proposed ITCG is shown to be advantageous in certain circumstances. By deriving a novel additional acceleration command, the proposed law is of lower dependence on time-to-go estimate and is capable of eliminating some singularities, leading to wider adjustable range of the desired impact time and better adaptability to more conditions. This research is expected to be supplementary to those presented in the current research literature.


2014 ◽  
Vol 629 ◽  
pp. 214-218
Author(s):  
Omar Kassim Ariff ◽  
E. Salami ◽  
M.T. Ahmad ◽  
T.H. Go

Autonomous aerial hard docking is the process where an aircraft approaches and forms a rigid connection with another aircraft. After the docking process is complete, it is not necessary for the lift and propulsion system of the docked aircraft to be operating. Docking allows the larger aircraft to carry the small aircraft outside its airframe, thereby extending the range of endurance of the smaller aircraft. In this paper, we investigate specific scenario where docking occurs between a rotary wing aircraft and a fixed wing aircraft. To perform the above procedure, a guidance system on each platform has to ensure interception while satisfying the primary interception condition of velocity vector co-linearity at the moment of intercept of the two trajectories or flight paths. Pursuit guidance and proportional navigation were assessed as candidates for further development for the terminal docking phase. Since the platforms are in quasi-perfect knowledge of each other, the pursuer evader scenario is replaced by the pursuer-pursuer scenario. The novelty of this work lies in the formulation of terminal constraints, as well as the findings obtained. This paper concludes that contrary to the missile guidance scenario, pursuit based guidance laws provide superior baseline laws from which AAHD guidance and navigation laws can be developed.


Sign in / Sign up

Export Citation Format

Share Document