Mining from Time Series Human Movement Data

Author(s):  
Chiu-Che Tseng ◽  
Diane Cook
2012 ◽  
Vol 13 (4) ◽  
pp. 1891-1903 ◽  
Author(s):  
Sofiane Ramdani ◽  
Frédéric Bouchara ◽  
Olivier Caron

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A111-A112
Author(s):  
Austin Vandegriffe ◽  
V A Samaranayake ◽  
Matthew Thimgan

Abstract Introduction Technological innovations have broadened the type and amount of activity data that can be captured in the home and under normal living conditions. Yet, converting naturalistic activity patterns into sleep and wakefulness states has remained a challenge. Despite the successes of current algorithms, they do not fill all actigraphy needs. We have developed a novel statistical approach to determine sleep and wakefulness times, called the Wasserstein Algorithm for Classifying Sleep and Wakefulness (WACSAW), and validated the algorithm in a small cohort of healthy participants. Methods WACSAW functional routines: 1) Conversion of the triaxial movement data into a univariate time series; 2) Construction of a Wasserstein weighted sum (WSS) time series by measuring the Wasserstein distance between equidistant distributions of movement data before and after the time-point of interest; 3) Segmenting the time series by identifying changepoints based on the behavior of the WSS series; 4) Merging segments deemed similar by the Levene test; 5) Comparing segments by optimal transport methodology to determine the difference from a flat, invariant distribution at zero. The resulting histogram can be used to determine sleep and wakefulness parameters around a threshold determined for each individual based on histogram properties. To validate the algorithm, participants wore the GENEActiv and a commercial grade actigraphy watch for 48 hours. The accuracy of WACSAW was compared to a detailed activity log and benchmarked against the results of the output from commercial wrist actigraph. Results WACSAW performed with an average accuracy, sensitivity, and specificity of >95% compared to detailed activity logs in 10 healthy-sleeping individuals of mixed sexes and ages. We then compared WACSAW’s performance against a common wrist-worn, commercial sleep monitor. WACSAW outperformed the commercial grade system in each participant compared to activity logs and the variability between subjects was cut substantially. Conclusion The performance of WACSAW demonstrates good results in a small test cohort. In addition, WACSAW is 1) open-source, 2) individually adaptive, 3) indicates individual reliability, 4) based on the activity data stream, and 5) requires little human intervention. WACSAW is worthy of validating against polysomnography and in patients with sleep disorders to determine its overall effectiveness. Support (if any):


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng-Chun Chang ◽  
Rebecca Kahn ◽  
Yu-An Li ◽  
Cheng-Sheng Lee ◽  
Caroline O. Buckee ◽  
...  

Abstract Background As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. Methods In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. Results We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. Conclusions To prepare for the potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.


2021 ◽  
Author(s):  
Tetsuya Yamada ◽  
Shoi Shi

Comprehensive and evidence-based countermeasures against emerging infectious diseases have become increasingly important in recent years. COVID-19 and many other infectious diseases are spread by human movement and contact, but complex transportation networks in 21 century make it difficult to predict disease spread in rapidly changing situations. It is especially challenging to estimate the network of infection transmission in the countries that the traffic and human movement data infrastructure is not yet developed. In this study, we devised a method to estimate the network of transmission of COVID-19 from the time series data of its infection and applied it to determine its spread across areas in Japan. We incorporated the effects of soft lockdowns, such as the declaration of a state of emergency, and changes in the infection network due to government-sponsored travel promotion, and predicted the spread of infection using the Tokyo Olympics as a model. The models used in this study are available online, and our data-driven infection network models are scalable, whether it be at the level of a city, town, country, or continent, and applicable anywhere in the world, as long as the time-series data of infections per region is available. These estimations of effective distance and the depiction of infectious disease networks based on actual infection data are expected to be useful in devising data-driven countermeasures against emerging infectious diseases worldwide.


Author(s):  
Chihiro Kamio ◽  
Tatsuhito Aihara ◽  
Gaku Minorikawa

Abstract Human movement data can contribute to the quality improvement of industrial and medical products affected by such movement. Such data can be used to improve the quality of industrial products as well as in healthcare applications, such as the development of artificial joints. To develop and design artificial joints with enhance durability, it is necessary to set up standards of durability using human movement data in daily life. The aim of this study is to obtain data that contributes to the improvement in durability of artificial elbow joints. We have developed a wearable device that can measure its self-acceleration, angular velocity, and quaternions to collect human movement data continuously for long-term. Additionally, we collected the arm movement data of 30 participants using the developed device. The participants of this study carried on with their normal lives with the measuring device worn on their wrist. This study calculated the posture of the wrist over time using quaternions and mainly analyzed posture changes. We clarified the characteristics and trends of the movement of bending the elbow in daily human life.


2021 ◽  
Vol 5 (5) ◽  
pp. 619-635
Author(s):  
Harya Widiputra

The primary factor that contributes to the transmission of COVID-19 infection is human mobility. Positive instances added on a daily basis have a substantial positive association with the pace of human mobility, and the reverse is true. Thus, having the ability to predict human mobility trend during a pandemic is critical for policymakers to help in decreasing the rate of transmission in the future. In this regard, one approach that is commonly used for time-series data prediction is to build an ensemble with the aim of getting the best performance. However, building an ensemble often causes the performance of the model to decrease, due to the increasing number of parameters that are not being optimized properly. Consequently, the purpose of this study is to develop and evaluate a deep learning ensemble model, which is optimized using a genetic algorithm (GA) that incorporates a convolutional neural network (CNN) and a long short-term memory (LSTM). A CNN is used to conduct feature extraction from mobility time-series data, while an LSTM is used to do mobility prediction. The parameters of both layers are adjusted using GA. As a result of the experiments conducted with data from the Google Community Mobility Reports in Indonesia that ranges from the beginning of February 2020 to the end of December 2020, the GA-Optimized Multivariate CNN-LSTM ensemble outperforms stand-alone CNN and LSTM models, as well as the non-optimized CNN-LSTM model, in terms of predicting human movement in the future. This may be useful in assisting policymakers in anticipating future human mobility trends. Doi: 10.28991/esj-2021-01300 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document