ACS fed Open-ended low profile antenna for IoT Applications

Author(s):  
S Jerosha Roselin ◽  
G Shine Let ◽  
C Benin Pratap ◽  
G Manasa Akhila
Keyword(s):  
2019 ◽  
Vol 39 (6) ◽  
pp. 393-406 ◽  
Author(s):  
Bilal Aslam ◽  
Muhammad Kashif ◽  
Muhammad Awais Azam ◽  
Yasar Amin ◽  
Jonathan Loo ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2053
Author(s):  
Maher Khaliel ◽  
Aman Batra ◽  
Abdelfattah Fawky ◽  
Thomas Kaiser

This paper proposes a novel single-layer, low-profile harmonic transponder to be integrated with the printable diodes based on Si particles. The introduced prototype consists of two bowtie dipoles that are directly matched to the harmonic generation element at a fundamental 2.45GHz frequency and also at the corresponding second harmonic 4.9GHz frequency. Therefore, the antennas and T-matching parts can be manufactured as separate inlays using a single layer-substrate. Besides the new prototype, the harmonic conversion loss (CL) is theoretically and experimentally investigated. In this regard, the equivalent circuit is driven and utilized to analyze the CL performance with variations in fundamental frequency and input power. The introduced transponder outperforms the state-of-the-art work from the printability, size, and CL point of views.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7909
Author(s):  
Saminathan Thiruvenkadam ◽  
Eswaran Parthasarathy ◽  
Sandeep Kumar Palaniswamy ◽  
Sachin Kumar ◽  
Lulu Wang

This article presents a quad-band multiple-input-multiple-output (MIMO) antenna for the Internet of Things (IoT) applications. The proposed antenna consists of four quarter-wavelength asymmetrical meandered radiators, microstrip feed lines, and modified ground planes. The antenna elements are arranged in a chiral pattern to improve isolation between them, with two radiators and two ground planes placed on the front side of the substrate and the other two on the back side. The MIMO antenna has an operating bandwidth (S11 ≤ −10 dB) of 1.76–1.84 GHz, 2.37–2.56 GHz, 3.23–3.68 GHz, and 5.34–5.84 GHz, covering GSM, WLAN, WiMAX, and 5G frequency bands. The isolation between the radiating elements is greater than 18 dB in the operating bands. The peak gain of the antenna is 3.6 dBi, and the envelope correlation coefficient (ECC) is less than 0.04. Furthermore, the proposed antenna is validated for IoT-based smart home (SH) applications. The prototype MIMO antenna is integrated with a commercially available ZigBee device, and the measured values are found to be consistent with the expected results. The proposed MIMO antenna could be a good candidate for IoT systems/modules due to its low profile, compact size, lightweight, and easy integration with wireless communication devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Cheuk Yin Cheung ◽  
Joseph S. M. Yuen ◽  
Steve W. Y. Mung

This paper focuses on a printed inverted-F antenna (PIFA) with meandering line and meandering shorting strip under 2.4 GHz industrial, scientific, and medical (ISM) band for Internet of things (IoT) applications. Bluetooth Low Energy (BLE) technology is one of potential platforms and technologies for IoT applications under ISM band. Printed circuit board (PCB) antenna commonly used in commercial and medical applications because of its small size, low profile, and low cost compared to low temperature cofired ceramic (LTCC) technology. The proposed structure of PIFA is implemented on PCB to gain all these advantages. Replacing conventional PCB line in PIFA by the meandering line and meandering shorting strip improves the efficiency of the PIFA as well as the bandwidth. As a case study, design and measurement results of the proposed PIFA are presented.


2019 ◽  
Vol 6 (1) ◽  
pp. 273-281
Author(s):  
Tojoarisoa Rakotoaritina ◽  
Megumi Saito ◽  
Zhenni Pan ◽  
Jiang Liu ◽  
Shigeru Shimamoto
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2766
Author(s):  
Wazie M. Abdulkawi ◽  
Abdel Fattah A. Sheta ◽  
Ibrahim Elshafiey ◽  
Majeed A. Alkanhal

This paper presents novel low-cost single- and dual-band microstrip patch antennas. The proposed antennas are realized on a square microstrip patch etched symmetrically with four slots. The antenna is designed to have low cost and reduced size to use in Internet of things (IoT) applications. The antennas provide a reconfigurable architecture that allows operation in different wireless communication bands. The proposed structure can be adjusted to operate either in single band or in dual-band operation. Two prototypes are implemented and evaluated. The first structure works at a single resonance frequency (f1 = 2.4 GHz); however, the second configuration works at two resonance frequencies (f1 = 2.4 GHz and f2 = 2.8 GHz) within the same size. These antennas use a low-cost FR-4 dielectric substrate. The 2.4 GHz is allotted for the industrial, scientific, and medical (ISM) band, and the 2.8 GHz is allocated to verify the concept and can be adjusted to meet the user’s requirements. The measurement of the fabricated antennas closely matches the simulated results.


2021 ◽  
Vol 98 ◽  
pp. 85-94
Author(s):  
Wissem El May ◽  
Imen Sfar ◽  
Jean Marc Ribero ◽  
Lotfi Osman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document