A LQR-based Neural-network Controller for Fast Stabilizing Rotary Inverted Pendulum

Author(s):  
Huynh Vinh Nghi ◽  
Dinh Phuoc Nhien ◽  
Nguyen Tran Minh Nguyet ◽  
Nguyen Tu Duc ◽  
Nguyen Phong Luu ◽  
...  
2012 ◽  
Vol 490-495 ◽  
pp. 1723-1727
Author(s):  
Jun Ting Wang ◽  
Guo Ping Liu ◽  
Wei Jin ◽  
Gen Fu Xiao

In the paper the mathematical model of the single inverted pendulum is established, on the base of the root locus and the control tasks the control system is made up of double closed-loop unit gain negative feedback and BP neural network controller. The results show that the inverted pendulum is efficiently controlled.


2013 ◽  
Vol 328 ◽  
pp. 72-76
Author(s):  
Huan Xin Cheng ◽  
Dao Sheng Zhang ◽  
Li Cheng

The traditional PID control, which is based on linearization, is often hard to obtain the optimal control effect on such nonlinear, multiple-output, strongly coupled systems like inverted pendulum. To solve the problem above, the BP neural network controller was developed for inverted pendulum. On the basis of establishing and analyzing the mathematical model of single inverted-pendulum, this paper established the state space expression, and then designed a neural network control system based on BP algorithm. The simulation was researched by Matlab and the running results show that this control has good robustness and can achieve satisfactory control effect.


Author(s):  
Alexsander Voevoda ◽  
◽  
Victor Shipagin ◽  

In this article, we consider a method for selecting a structure of a neural network used to regulate an "inverted pendulum on a cart" object taking into account its additional features of a mathematical description, namely, nonlinear parameters. The algorithm is illustrated by the example of control synthesis which includes two neuroregulators. One of them is responsible for bringing the cart to the specified position, and the second is responsible for holding the pendulum in a vertical position. The structure transformations will be performed for the controller responsible for bringing the cart to the specified position. The architecture of a neural network controller is based on a discrete controller synthesized using polynomial matrix decomposition. For the original controller, we define the limits of its possible control of a nonlinear system. To increase the range of control of a nonlinear object, we perform transformations of the neural network structure of the original controller. We will make some complications in the structure of the neural network of the regulator, namely, increase the number of neurons and replace some activation functions with nonlinear ones (hyperbolic tangent). Next, we suggest one of the ways to select initial values of weight coefficients. Then we train the neural network and check the performance of the resulting controller on a nonlinear object. At the next stage, we compare the obtained performance of a controller having a complicated neural network structure with the performance of a classical controller. Thus, the purpose of this study is to formalize the synthesis procedure for a neural network controller for controlling a nonlinear object using a calculated classical controller for a linearized object model. The proposed method of generating the architecture of a neural network of controllers makes it possible to increase the range of control by a nonlinear object in comparison with the controller obtained by the method of polynomial matrix decomposition for a linear object. Compared to the typical ones, the proposed neural network structure is not redundant and therefore does not require additional computing resources to configure it.


Sign in / Sign up

Export Citation Format

Share Document