scholarly journals Comparison of energy inputs and energy efficiency for maize in a long-term tillage experiment under Pannonian climate conditions

2021 ◽  
Vol 67 (No. 5) ◽  
pp. 45-52
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Sustainable crop production requires an efficient usage of fossil energy. This six-year study on a silt loam soil (chernozem) analysed the energy efficiency of four tillage systems (mouldboard plough 25–30 cm, deep conservation tillage 35 cm, shallow conservation tillage 8–10 cm, no-tillage). Fuel consumption, total energy input (made up of both direct and indirect input), grain of maize yield, energy output, net-energy output, energy intensity and energy use efficiency were considered. The input rates of fertiliser, herbicides and seeds were set constant; measured values of fuel consumption were used for all tillage operations. Total fuel consumption for maize (Zea mays L.) production was 81.6, 81.5, 69.5 and 53.2 L/ha for the four tillage systems. Between 60% and 64% of the total energy input (17.0–17.4 GJ/ha) was indirect energy (seeds, fertiliser, herbicides, machinery). The share of fertiliser energy of the total energy input was 36% on average across all tillage treatments. Grain drying was the second highest energy consumer with about 22%. Grain yield and energy output were mainly determined by the year. The tillage effect on yield and energy efficiency was smaller than the growing year effect. Over all six years, maize produced in the no-tillage system reached the highest energy efficiency.  

2021 ◽  
Vol 67 (No. 3) ◽  
pp. 137-146
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Sustainable cropping systems require efficient usage of fossil energy. This study performed on a long-term field experiment in the Pannonian Basis investigated the energy efficiency of four tillage systems (mouldboard plough (MP), deep conservation tillage (CT<sub>d</sub>), shallow conservation tillage (CT<sub>s</sub>) and no-tillage (NT)) for sugar beet and soybean production, taking fuel consumption, total energy input (made up of both direct and indirect inputs), crop yield, energy output, net-energy output, energy intensity and energy use efficiency into account. The input rates of fertiliser, chemical plant protection, and seeds were set constant across years; whereas measured values of fuel consumption were used for all tillage treatments. NT required a considerably lower energy input than MP and CT<sub>d</sub> as no fuel is needed for tillage and just slightly more fuel for additional spraying of glyphosate. Anyhow, the energy efficiency parameters did not differ between tillage treatments, as theses parameters were mainly determined by energy output, which was considerably higher than the energy input. However, year effects on the energy efficiency were observed for both crops. Nitrogen fertilisation and diesel fuel consumption were identified as the most energy-intensive inputs. Consequently, the energy input for sugar beet was higher than that for soybean, which was identified as a low-input crop. But sugar beet attained a more than 4 times higher net-energy output, a 2.5 times higher energy use efficiency, and an energy intensity for yield production of less than 3 times those of soybean.  


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

A goal in sustainable agriculture is to use fossil energy more efficiently in crop production. This 60-year-old experiment on a silt loam chernozem investigated effects of fertilization (unfertilized control, mineral fertilizer (NPK) and farmyard manure (FYM)) and rotation (continuous winter rye (CR), winter rye in rotation (RR), spring barley in rotation (SB) on diesel fuel consumption, total energy input (made of both direct and indirect inputs), crop yield, energy output, net-energy output, energy intensity, energy productivity and energy use efficiency. The input rates of fertilizer, herbicides and seeds were set constant during the experiment. Soil tillage was done with a moldboard plough with subsequent combined seedbed preparation and seeding. The mean calculated total energy input was highest in NPK with 11.28 GJ ha−1 and lowest in the unfertilized control with 5.00 GJ ha−1. Total energy input for FYM was intermediate with 6.30 GJ ha−1. With energetic consideration of NPK nutrients in FYM the total energy input increased to the level of NPK. The share of the fertilizer energy on the total energy input was 49% for NPK. Fertilization with FYM and NPK increased yield and energy output considerably, especially of CR and SB which attained about doubled values. Crop rotation also increased the yield and energy output, especially of unfertilized rye, which attained values increased by about 75%. Fertilization with FYM resulted in the highest energy efficiency as the net-energy output, the energy productivity and the energy use efficiency were higher but the energy intensity was lower compared to unfertilized controls and NPK. When the nutrients in FYM were also energetically considered, the energy efficiency parameters of FYM decreased to the level of the NPK treatment. Crop rotation increased the energy efficiency of winter rye compared to the monoculture.


1998 ◽  
Vol 78 (4) ◽  
pp. 553-563 ◽  
Author(s):  
R. P. Zentner ◽  
B. G. McConkey ◽  
M. A. Stumborg ◽  
C. A. Campbell ◽  
F. Selles

There is growing interest in the potential for improving nonrenewable energy use efficiency of traditional agricultural production activities in the Canadian prairies. This study, which was conducted on three soil textures in the Brown soil zone of southwestern Saskatchewan, examined the energy performance of conventional tillage (CT), minimum tillage (MT), and no-tillage (NT) management practices for spring wheat grown in fallow-wheat (F–W) and continuous wheat (Cont W) rotations over a 12-yr period (1982–1993). Metabolizable energy output increased with cropping intensity on a silt loam at Swift Current and on a clay at Stewart Valley (average of 16 751 MJ ha–1 for F–W and 24 110 MJ ha−1 for Cont W), but not on a sandy loam at Cantuar (average 14 828 MJ ha−1) where soil water-holding capacity was limited. Further, because grain yield was rarely significantly influenced by tillage method, the latter had little influence on the overall output of metabolizable energy. Total input of nonrenewable energy per unit of rotation also increased with cropping intensity (average 2585 MJ ha−1 for F–W and 5274 MJ ha−1 for Cont W). This was primarily because of the higher rates of N fertilizer that were required with stubble cropping. We found little or no net energy savings with NT management; the F–W (MT) system tended to have the lowest overall nonrenewable energy requirement at all test sites. Although the use of conservation tillage practices provided significant energy savings in fuel and machinery, particularly for F–W systems, these were largely offset by increases in the energy input for herbicides, and higher rates of N fertilizer that were required for NT managed areas. Consequently, net energy produced (energy output minus energy input) had similar patterns as metabolizable energy output. In contrast, when efficiency was expressed as ratios of energy output to energy input, or quantity of wheat produced per unit of energy input, the values were higher for F–W (average 6.2 and 456 kg GJ−1, respectively) than for Cont W systems (average 3.8 and 278 kg GJ−1, respectively). These measures of energy efficiency also tended to be higher for CT and MT than for NT management on the medium- and fine-textured soils, but on the coarse-textured soil, tillage had no influence on the energy efficiency of the cropping systems. We concluded that the potential for achieving energy savings by adopting conservation tillage management for monoculture wheat rotations is low in this semiarid region. This was because of the lack of consistent yield advantages with MT and NT, and due to the few tillage operations that are traditionally used to control weeds on summerfllow areas and to prepare the seedbed with CT management. Key words: Wheat, minimum tillage, no-tillage, nonrenewable energy, energy output/input, energy efficiency


Author(s):  
Osman Gokdogan ◽  
Seyithan Seydosoglu ◽  
Kagan Kokten ◽  
Aydin Sukru Bengu ◽  
Mehmet Firat Baran

The aim of this research is to compose an energy input-output of guar and lupin production during the production season of 2015 in Bingol province of Turkey. The energy input in guar and lupin production have been computed as 14 619.97 MJ ha-1 and 23 486.73 MJ ha-1, respectively. The energy output in guar and lupin production have been calculated as 43 767.21 MJ ha-1 and 16 554.41 MJ ha-1, respectively. Energy usage efficiency, specific energy, energy productivity and net energy in guar production have been calculated as 2.99, 6.42 MJ kg-1, 0.16 kg MJ-1 and 29 147.24 MJ ha-1, respectively. Energy usage efficiency, specific energy, energy productivity and net energy in lupin production have been calculated as 0.70, 31.95 MJ kg-1, 0.04 kg MJ-1 and -6932.32 MJ ha-1, respectively. The total energy input used up in guar production could be classified as 51.31 % direct, 48.69 % indirect, 22.24 % renewable and 77.76 % non-renewable. The total energy input used up in lupin production could be classified as 31.35 % direct, 68.65 % indirect, 33.68 % renewable and 66.32 % non-renewable.


2018 ◽  
Vol 48 (5) ◽  
Author(s):  
Tomás de Aquino Ferreira ◽  
Sílvia Costa Ferreira ◽  
Jackson Antônio Barbosa ◽  
Carlos Eduardo Silva Volpato ◽  
Rute Costa Ferreira ◽  
...  

ABSTRACT: The aim of the present study is to evaluate the energy balance and energy efficiency of the silage maize crop in the Center for Research, Development and Technology Transfer of the Universidade Federal de Lavras (CDTT-UFLA). The crop was irrigated by center pivot and the stages of maize cultivation and energy inputs were monitored for the 1st and 2nd crops of the 2014/2015 harvest. Results from the energy analysis showed the crop had a total energy input of 45,643.85 MJ ha-1 and 47,303.60 MJ ha-1 for the 1st and 2nd crops and a significant predominance of direct energy type (about 92% of the matrix). Regarding direct energy inputs, the diesel oil was the most representative, contributing with approximately 38% of the total energy demand. Conversely, the irrigation system contribute with 3.92% e 5.97% in the 1st and 2nd crops, representing the largest indirect energy input. Nevertheless, irrigation and crop management allowed the system achieving high levels of productivity, resulting in an energy efficiency of 25.1 and 28.1 for the first and second crops respectively.


2016 ◽  
Vol 39 (1) ◽  
Author(s):  
Nitin Gudadhe ◽  
M. B. Dhonde ◽  
N. A. Hirwe ◽  
N. M. Thete

This study was conducted during the year 2006-07 and 2007-08 to determine how energy balances of crop production are affected by cotton-chickpea cropping sequence and different sources of organic and inorganic fertilizer under the semi-arid conditions of western Maharashtra. The energy input and output, energy balance per unit input ratio and the energy output/ input ratio were varied significantly individually to cotton and chickpea during both the years. However on pooled mean basis to cotton-chickpea cropping sequence, the energy input, output and energy balance were significantly higher by application of (RDF) Recommended Dose of Fertilizer according to Soil Test Crop Response (STCR) equation to cotton and 100% RDF to chickpea. Significantly higher energy balance per unit input and energy output per input ratio (6.46 MJ/ ha and 7.46) were recorded by 100% RDF + 10 FYM/ha to cotton and it was 5.72 MJ/ha and 6.72 by 100% RDF to chickpea. Application of RDF according to STCR equation (₹ 64960 and 3.07) to cotton and 100% RDF (₹ 46744 and 2.23) application to chickpea registered higher net monetary returns and benefit cost ratio respectively.


1981 ◽  
Vol 29 (1) ◽  
pp. 3-14
Author(s):  
L. Boersma ◽  
E. Gasper ◽  
J.E. Oldfield ◽  
P.R. Cheeke

The recovery of nutrients from pig manure (300 l/day discharged by 100 pigs) during digestion for biogas production amounted to 1435 kg N, 350 kg P and 490 kg K per year. When spread on the 15.26 ha of land required to grow the corn and soybean for the pig ration, each hectare would receive 94 kg N, 23 kg P and 32 kg K per year. The energy value of the recovered fertilizer represents 4.4% of the total energy input of the pig production system. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2021 ◽  
Vol 228 ◽  
pp. 01010
Author(s):  
Oleg Bazaluk ◽  
Valerii Havrysh ◽  
Vitalii Nitsenko

Agricultural residues, including straw, are important energy feedstock for electricity generation. This study aims to develop a model for energy and environmental assessment of straw production, taking into account its life cycle. The proposed mathematical model allows us to distribute input energy (into any crop production) and emit carbon dioxide (during crop production) between grain and straw formation. It takes into account direct energy input (fuels, electricity, etc.), indirect energy input (fertilizer, herbicide, etc.), and energy required in manufacturing agricultural tractors and implements. It has been found that straw formation consumes from 41 to 66 % of the total energy input and CO2 emissions.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Tao Zhang ◽  
Chi Zhang

This paper presents numerical simulations of high-pressure biaxial tests on breakable granular soils with the discrete element method. The 2D setting is more economic in terms of computational cost, which allows simulation with a larger number of particles with a wider size distribution. The results of breakable and unbreakable agglomerates show that particle breakage has a significant influence on the macro- and micromechanical behaviors of the assembly. Higher confining pressure and larger axial strain result in the variation of particle grading and agglomerate numbers. The evolution of bond breakage during shearing makes it possible to trace the failure process and breakage mechanism at the microlevel. The breakage energy is found to account for a small fraction of total energy input compared with friction energy. A hyperbolic correlation between relative particle breakage and total energy input per unit volume was established regardless of the influence of confining pressure.


Sign in / Sign up

Export Citation Format

Share Document