scholarly journals Sparse noise minimization in image classification using Genetic Algorithm and DenseNet

Author(s):  
Ibomoiye Domor Mienye ◽  
Priye Kenneth Ainah ◽  
Ikiomoye Douglas Emmanuel ◽  
Ebenezer Esenogho
Author(s):  
B. Saichandana ◽  
K. Srinivas ◽  
R. KiranKumar

<p>Hyperspectral remote sensors collect image data for a large number of narrow, adjacent spectral bands. Every pixel in hyperspectral image involves a continuous spectrum that is used to classify the objects with great detail and precision. This paper presents hyperspectral image classification mechanism using genetic algorithm with empirical mode decomposition and image fusion used in preprocessing stage. 2-D Empirical mode decomposition method is used to remove any noisy components in each band of the hyperspectral data. After filtering, image fusion is performed on the hyperspectral bands to selectively merge the maximum possible features from the source images to form a single image. This fused image is classified using genetic algorithm. Different indices, such as K-means (KMI), Davies-Bouldin Index (DBI), and Xie-Beni Index (XBI) are used as objective functions. This method increases classification accuracy of hyperspectral image.</p>


2020 ◽  
Vol 50 (9) ◽  
pp. 3840-3854 ◽  
Author(s):  
Yanan Sun ◽  
Bing Xue ◽  
Mengjie Zhang ◽  
Gary G. Yen ◽  
Jiancheng Lv

Author(s):  
M. Xue ◽  
B. Wei ◽  
L. Yang

Abstract. SegNet model is an improved model of Full Convolutional Networks (FCN). Its encoder, i.e. image feature extraction, is still a convolutional neural network (CNN). Aiming at the problem that most traditional CNN training uses error back propagation algorithm (BP algorithm), which has slow convergence speed and is easy to fall into local optimum solution, this paper takes SegNet as the research object, and proposes a method of extracting partial weights by using genetic algorithm (GA) to select features of SegNet model, and to alleviate the problem that SegNet is easy to fall into local optimal solution. In the training process of SegNet model, the weight of convolution layer of SegNet model used to extract features is optimized through selection, crossover and mutation of genetic algorithm, and then the improved SegNet semantic model (GA-SegNet model) is obtained by GA. In order to verify the image classification effect of the proposed GA-SegNet model, the same high-resolution remote sensing image data are used for experiments, and the model is compared with maximum likelihood (ML), support vector machine (SVM), traditional CNN and SegNet semantic model without GA improvement. The experimental results show that the proposed GA-SegNet model has the best classification accuracy and effect, which GA overcomes the problem of premature convergence of BP random gradient descent to a certain extent, and improves the classification performance of SegNet semantic model.


Author(s):  
J. Anitha ◽  
C. Kezi Selva Vijila ◽  
D. Jude Hemanth

Fuzzy approaches are one of the widely used artificial intelligence techniques in the field of ophthalmology. These techniques are used for classifying the abnormal retinal images into different categories that assist in treatment planning. The main characteristic feature that makes the fuzzy techniques highly popular is their accuracy. But, the accuracy of these fuzzy logic techniques depends on the expertise knowledge, which indirectly relies on the input samples. Insignificant input samples may reduce the accuracy that further reduces the efficiency of the fuzzy technique. In this work, the application of Genetic Algorithm (GA) for optimizing the input samples is explored in the context of abnormal retinal image classification. Abnormal retinal images from four different classes are used in this work and a comprehensive feature set is extracted from these images as classification is performed with the fuzzy classifier and also with the GA optimized fuzzy classifier. Experimental results suggest highly accurate results for the GA based classifier than the conventional fuzzy classifier.


Sign in / Sign up

Export Citation Format

Share Document