Anti-wind Trajectory Control for Unmanned Aerial Vehicle with Nonlinear Dynamic Inversion Based on High Order Sliding Mode

Author(s):  
Jiayun Wen ◽  
Honglun Wang ◽  
Dawei Li
2019 ◽  
Vol 52 (12) ◽  
pp. 304-309
Author(s):  
A. Hamissi ◽  
Y. Bouzid ◽  
N. Dabouze ◽  
M. Zaouche ◽  
K. Busawon ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Inseok Yang ◽  
Dongik Lee

A robust nonlinear dynamic inversion (RNDI) technique is proposed in order to synchronize the behavior of chaotic gyros subjected to uncertainties such as model mismatches and disturbances. Gyro is a crucial device that measures and maintains the orientation of a vehicle. By Leipnik and Newton in 1981, chaotic behavior of a gyro under specific conditions was established. Hence, controlling and synchronizing a gyro that shows irregular (chaotic) motion are very important. The proposed synchronization method is based on nonlinear dynamic inversion (NDI) control. NDI is a nonlinear control technique that removes the original system dynamics into the user-defined desired dynamics. Since NDI removes the original dynamics directly, it does not need linearizing and designing gain-scheduled controllers for each equilibrium point. However, achieving perfect cancellation of the original nonlinear dynamics is impossible in real applications due to model uncertainties and disturbances. This paper proposes the robustness assurance method of NDI based on sliding mode control (SMC). Firstly, similarities of the conventional NDI control and SMC are provided. And then the RNDI control technique is proposed. The feasibility and effectiveness of the proposed method are demonstrated by numerical simulations.


Author(s):  
Jimoh Olarewaju Pedro ◽  
Aarti Panday ◽  
Laurent Dala

The paper presents the development of modelling and control strategies for a six-degree-of-freedom, unmanned combat aerial vehicle with the inclusion of the centre of gravity position travel during the straight-leg part of an in-flight refuelling manoeuvre. The centre of gravity position travel is found to have a parabolic variation with an increasing mass of aircraft. A nonlinear dynamic inversion-based neurocontroller is designed for the process under investigation. Three radial basis function neural networks are exploited in order to invert the dynamics of the system, one for each control channel. Modal and time-domain analysis results show that the dynamic properties of the aircraft are strongly influenced during aerial refuelling. The effectiveness of the proposed control law is demonstrated through the use of simulation results for an F-16 aircraft. The longitudinal neurocontroller provided interesting results, and performed better than a baseline nonlinear dynamic inversion controller without neural network. On the other hand, the lateral-directional nonlinear dynamic inversion-based neurocontroller did not perform well as the longitudinal controller. It was concluded that the nonlinear dynamic inversion-based neurocontroller could be applied to control an unmanned combat aerial vehicle during aerial refuelling.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Inseok Yang ◽  
Dongik Lee ◽  
Dong Seog Han

The robust nonlinear dynamic inversion (RNDI) control technique is proposed to keep the relative position of spacecrafts while formation flying. The proposed RNDI control method is based on nonlinear dynamic inversion (NDI). NDI is nonlinear control method that replaces the original dynamics into the user-selected desired dynamics. Because NDI removes nonlinearities in the model by inverting the original dynamics directly, it also eliminates the need of designing suitable controllers for each equilibrium point; that is, NDI works as self-scheduled controller. Removing the original model also provides advantages of ease to satisfy the specific requirements by simply handling desired dynamics. Therefore, NDI is simple and has many similarities to classical control. In real applications, however, it is difficult to achieve perfect cancellation of the original dynamics due to uncertainties that lead to performance degradation and even make the system unstable. This paper proposes robustness assurance method for NDI. The proposed RNDI is designed by combining NDI and sliding mode control (SMC). SMC is inherently robust using high-speed switching inputs. This paper verifies similarities of NDI and SMC, firstly. And then RNDI control method is proposed. The performance of the proposed method is evaluated by simulations applied to spacecraft formation flying problem.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Zhenchang Liu ◽  
Jie Guo ◽  
Mengting Li ◽  
Shengjing Tang ◽  
Xiao Wang

The paper seeks to study the control system design of a novel unmanned aerial vehicle (UAV). The UAV is capable of vertical takeoff and landing (VTOL), transition flight and cruising via the technique of direct force control. The incremental nonlinear dynamic inversion (INDI) approach is adopted for the 6-DOF nonlinear and nonaffine control of the UAV. Based on the INDI control law, a method of two-layer cascaded optimal control allocation is proposed to handle the redundant and coupled control variables. For the weight selection in optimal control allocation, a dynamic weight strategy is proposed. This strategy can adjust the weight of the objective function according to the flight states and mission requirements, thus determining the optimizing direction and ensuring the rationality of the allocation results. Simulation results indicate that the UAV can track the target trajectory accurately and exhibit continuous maneuverability in transition flight.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This article proposes a novel adaptive super-twisting sliding mode control scheme with a time-delay estimation technique (ASTSMC-TDE) to control the yaw angle of a single ducted-fan unmanned aerial vehicle system. Such systems are highly nonlinear; hence, the proposed control scheme is a combination of several control schemes; super-twisting sliding mode, TDE technique to estimate the nonlinear factors of the system, and an adaptive sliding mode. The tracking error of the ASTSMC-TDE is guaranteed to be uniformly ultimately bounded using Lyapunov stability theory. Moreover, to enhance the versatility and the practical feasibility of the proposed control scheme, a comparison study between the proposed controller and a proportional-integral-derivative controller (PID) is conducted. The comparison is achieved through two different scenarios: a normal mode and an abnormal mode. Simulation and experimental tests are carried out to provide an in-depth investigation of the performance of the proposed ASTSMC-TDE control system.


Sign in / Sign up

Export Citation Format

Share Document