Development of a virtual reality leg-cycling training system for stroke patients

Author(s):  
Hsin-Chang Lo ◽  
Ya-Hsin Hsueh ◽  
Chun-Yu Yeh ◽  
Sin-Lin Chen
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Chieh Yin ◽  
Ya-Hsin Hsueh ◽  
Chun-Yu Yeh ◽  
Hsin-Chang Lo ◽  
Yi-Ting Lan

Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS), which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI) between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p=0.046) and in force plate the stand balance has also improved by 0.29 (p=0.031); thus both methods show the significant difference.


2009 ◽  
Vol 36 (S 02) ◽  
Author(s):  
R Gentner ◽  
A Hefny ◽  
W Farhan ◽  
F Segor ◽  
D Dees ◽  
...  

Author(s):  
S Leinster-Evans ◽  
J Newell ◽  
S Luck

This paper looks to expand on the INEC 2016 paper ‘The future role of virtual reality within warship support solutions for the Queen Elizabeth Class aircraft carriers’ presented by Ross Basketter, Craig Birchmore and Abbi Fisher from BAE Systems in May 2016 and the EAAW VII paper ‘Testing the boundaries of virtual reality within ship support’ presented by John Newell from BAE Systems and Simon Luck from BMT DSL in June 2017. BAE Systems and BMT have developed a 3D walkthrough training system that supports the teams working closely with the QEC Aircraft Carriers in Portsmouth and this work was presented at EAAW VII. Since then this work has been extended to demonstrate the art of the possible on Type 26. This latter piece of work is designed to explore the role of 3D immersive environments in the development and fielding of support and training solutions, across the range of support disciplines. The combined team are looking at how this digital thread leads from design of platforms, both surface and subsurface, through build into in-service support and training. This rich data and ways in which it could be used in the whole lifecycle of the ship, from design and development (used for spatial acceptance, HazID, etc) all the way through to operational support and maintenance (in conjunction with big data coming off from the ship coupled with digital tech docs for maintenance procedures) using constantly developing technologies such as 3D, Virtual Reality, Augmented Reality and Mixed Reality, will be proposed.  The drive towards gamification in the training environment to keep younger recruits interested and shortening course lengths will be explored. The paper develops the options and looks to how this technology can be used and where the value proposition lies. 


Author(s):  
N. Nozdryukhina ◽  
E. Kabayeva ◽  
E. Kirilyuk ◽  
K. Tushova ◽  
A. Karimov

Despite significant advances in the treatment and rehabilitation of stroke, level of post-stroke disability remains at a fairly high level. Recent innovative developments in the rehabilitation of these patients provide good results in terms of functional outcome. One of such developments is method of virtual reality (VR), which affects not only the speed and volume of regaining movement, as well as coordination, but also normalizes the psycho-emotional background, increasing the motivation of patients to improve the recovery process. This article provides a literature review of the use of the VR method in the rehabilitation of post-stroke patients, neurophysiological aspects of recovery of lost functions using this method are considered.


2021 ◽  
Vol 11 (4) ◽  
pp. 1510
Author(s):  
Charles Morizio ◽  
Maxime Billot ◽  
Jean-Christophe Daviet ◽  
Stéphane Baudry ◽  
Christophe Barbanchon ◽  
...  

People who survive a stroke are often left with long-term neurologic deficits that induce, among other impairments, balance disorders. While virtual reality (VR) is growing in popularity for postural control rehabilitation in post-stroke patients, studies on the effect of challenging virtual environments, simulating common daily situations on postural control in post-stroke patients, are scarce. This study is a first step to document the postural response of stroke patients to different challenging virtual environments. Five subacute stroke patients and fifteen age-matched healthy adults were included. All participants underwent posturographic tests in control conditions (open and closed eyes) and virtual environment without (one static condition) and with avatars (four dynamic conditions) using a head-mounted device for VR. In dynamic environments, we modulated the density of the virtual crowd (dense and light crowd) and the avoidance space with the avatars (near or far). Center of pressure velocity was collected by trial throughout randomized 30-s periods. Results showed that more challenging conditions (dynamic condition) induced greater postural disturbances in stroke patients than in healthy counterparts. Our study suggests that virtual reality environments should be adjusted in light of obtaining more or less challenging conditions.


Author(s):  
Xiaohui Liao ◽  
Hao Wang ◽  
Jinliang Niu ◽  
Jingbo Xiao ◽  
Chuan Liu

Sign in / Sign up

Export Citation Format

Share Document