High performance final state control system based on minimum-jerk trajectory for industrial robots

Author(s):  
Takashi Yoshioka ◽  
Naoki Shimada ◽  
Kiyoshi Ohishi ◽  
Toshimasa Miyazaki
1985 ◽  
Vol 107 (1) ◽  
pp. 53-59 ◽  
Author(s):  
M. C. Good ◽  
L. M. Sweet ◽  
K. L. Strobel

The design of high performance motion controls for industrial robots is based on accurate models for the robot arm and drive systems. This paper presents analytical models and experimental data to show that interactions between electromechanical drives coupled with compliant linkages to arm link drive points are of fundamental importance to robot control system design. Flexibility in harmonic drives produces resonances in the 5 Hz to 8 Hz range. Flexibility in the robot linkages and joints connecting essentially rigid arm members produces higher frequency modes at 14 Hz and 40 Hz. The nonlinear characteristics of the drive system are modeled, and compared to experimental data. The models presented have been validated over the frequency range 0 to 50 Hz. The paper concludes with a brief discussion of the influence of model characteristics on motion control design.


2020 ◽  
Vol 40 (1) ◽  
pp. 58-60
Author(s):  
A. A. Zelenskii ◽  
T. Kh. Abdullin ◽  
Yu. V. Ilyukhin ◽  
M. A. Khar’kov

2009 ◽  
Vol 129 (9) ◽  
pp. 938-944 ◽  
Author(s):  
Mitsuo Hirata ◽  
Takahiro Kidokoro ◽  
Shinji Ueda

2019 ◽  
Vol 2019 (4) ◽  
pp. 5-12 ◽  
Author(s):  
Михаил Мурашко ◽  
Mihail Murashko ◽  
Ирина Серегина ◽  
Irina Seregina

The article presents main properties of the federal projects of the National project «Health care», as well as the main activities of those projects, in which Roszdravnadzor has a particular interest. The article depicts the control and monitoring system applied by the Department of state control of implementation of state healthcare programs of Rosdravnadzor, which allows to detect in real time the subjects of the Russian Federation that have the highest risk of falling short of the targeted indicator of the regional projects and to take this information into account during the development of the plan for the control and surveillance activities.


2014 ◽  
Vol 907 ◽  
pp. 139-149 ◽  
Author(s):  
Eckart Uhlmann ◽  
Florian Heitmüller

In gas turbines and turbo jet engines, high performance materials such as nickel-based alloys are widely used for blades and vanes. In the case of repair, finishing of complex turbine blades made of high performance materials is carried out predominantly manually. The repair process is therefore quite time consuming. And the costs of presently available repair strategies, especially for integrated parts, are high, due to the individual process planning and great amount of manually performed work steps. Moreover, there are severe risks of partial damage during manually conducted repair. All that leads to the fact that economy of scale effects remain widely unused for repair tasks, although the piece number of components to be repaired is increasing significantly. In the future, a persistent automation of the repair process chain should be achieved by developing adaptive robot assisted finishing strategies. The goal of this research is to use the automation potential for repair tasks by developing a technology that enables industrial robots to re-contour turbine blades via force controlled belt grinding.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Chen Zhang ◽  
Zhuo Tang ◽  
Kenli Li ◽  
Jianzhong Yang ◽  
Li Yang

Installing a six-dimensional force/torque sensor on an industrial arm for force feedback is a common robotic force control strategy. However, because of the high price of force/torque sensors and the closedness of an industrial robot control system, this method is not convenient for industrial mass production applications. Various types of data generated by industrial robots during the polishing process can be saved, transmitted, and applied, benefiting from the growth of the industrial internet of things (IIoT). Therefore, we propose a constant force control system that combines an industrial robot control system and industrial robot offline programming software for a polishing robot based on IIoT time series data. The system mainly consists of four parts, which can achieve constant force polishing of industrial robots in mass production. (1) Data collection module. Install a six-dimensional force/torque sensor at a manipulator and collect the robot data (current series data, etc.) and sensor data (force/torque series data). (2) Data analysis module. Establish a relationship model based on variant long short-term memory which we propose between current time series data of the polishing manipulator and data of the force sensor. (3) Data prediction module. A large number of sensorless polishing robots of the same type can utilize that model to predict force time series. (4) Trajectory optimization module. The polishing trajectories can be adjusted according to the prediction sequences. The experiments verified that the relational model we proposed has an accurate prediction, small error, and a manipulator taking advantage of this method has a better polishing effect.


Author(s):  
Yan Zhang ◽  
Hao Li ◽  
Xuda Qin ◽  
Jie liu ◽  
Zhuojie Hou

To fulfill the demands of higher precision, better quality, and more flexibility, the usage of high-performance industrial robots is rapidly increased in aerospace industry. Considering the anisotropic and inhomogeneous characteristics of composite materials, this study focuses mainly on dynamic response investigation of a newly designed hybrid robot (named as TriMule) in CFRP trimming process and its influence on the machined quality. First, combined with the cutting force characteristic, the vibration responses of tool center point (TCP) under the dynamic excitation were obtained. The influences of robotic TCP vibration on machined surface quality with different fiber orientations, including surface waviness, cavity, 3D surface roughness, and depth of affected zone, are first studied by comparing hybrid robot and machine tool. From experiment results, it can be concluded the proposed TCP vibration response model has sufficient prediction accuracy. Meanwhile, it is found that larger robotic vibration response is accompanied by higher surface waviness, bigger surface cavity, and greater affected zone. Results also showed that the fiber orientation and milling style are two essential factors that affect robot vibration and machining quality during CFRP trimming.


Sign in / Sign up

Export Citation Format

Share Document