Instrumentation for surface geothermal data acquisition aiming at sustainable heat exchangers

Author(s):  
A. J. Longo ◽  
F. A. Farret ◽  
F. T. Fernandes ◽  
C. R. De Nardin
Author(s):  
C. H. Carter ◽  
J. E. Lane ◽  
J. Bentley ◽  
R. F. Davis

Silicon carbide (SiC) is the generic name for a material which is produced and fabricated by a number of processing routes. One of the three SiC materials investigated at NCSU is Norton Company's NC-430, which is produced by reaction-bonding of Si vapor with a porous SiC host which also contains free C. The Si combines with the free C to form additional SiC and a second phase of free Si. Chemical vapor deposition (CVD) of CH3SiCI3 onto a graphite substrate was employed to produce the second SiC investigated. This process yielded a theoretically dense polycrystalline material with highly oriented grains. The third SiC was a pressureless sintered material (SOHIO Hexoloy) which contains B and excess C as sintering additives. These materials are candidates for applications such as components for gas turbine, adiabatic diesel and sterling engines, recouperators and heat exchangers.


1990 ◽  
Vol 51 (C2) ◽  
pp. C2-939-C2-942 ◽  
Author(s):  
N. DINER ◽  
A. WEILL ◽  
J. Y. COAIL ◽  
J. M. COUDEVILLE

2016 ◽  
Vol 41 ◽  
pp. 268-271
Author(s):  
Luca Alberti ◽  
Adriana Angelotti ◽  
Matteo Antelmi ◽  
Ivana La Licata

Food Chain ◽  
2015 ◽  
Vol 5 (1-2) ◽  
pp. 91-104 ◽  
Author(s):  
Andrew Marchant ◽  
Andrew Graffham ◽  
Lateef Sanni ◽  
Idowu Adeoya

2010 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Andreas H Mahnken ◽  

Over the last decade, cardiac computed tomography (CT) technology has experienced revolutionary changes and gained broad clinical acceptance in the work-up of patients suffering from coronary artery disease (CAD). Since cardiac multidetector-row CT (MDCT) was introduced in 1998, acquisition time, number of detector rows and spatial and temporal resolution have improved tremendously. Current developments in cardiac CT are focusing on low-dose cardiac scanning at ultra-high temporal resolution. Technically, there are two major approaches to achieving these goals: rapid data acquisition using dual-source CT scanners with high temporal resolution or volumetric data acquisition with 256/320-slice CT scanners. While each approach has specific advantages and disadvantages, both technologies foster the extension of cardiac MDCT beyond morphological imaging towards the functional assessment of CAD. This article examines current trends in the development of cardiac MDCT.


2020 ◽  
Vol E103.C (8) ◽  
pp. 345-352
Author(s):  
Zhongyuan ZHOU ◽  
Mingjie SHENG ◽  
Peng LI ◽  
Peng HU ◽  
Qi ZHOU

Sign in / Sign up

Export Citation Format

Share Document