Short-channel like effects in Schottky barrier carbon nanotube field-effect transistors

Author(s):  
J. Appenzeller ◽  
J. Knoch ◽  
R. Martel ◽  
V. Derycke ◽  
S. Wind ◽  
...  
2012 ◽  
Vol 67 (6-7) ◽  
pp. 317-326 ◽  
Author(s):  
Alireza Heidari ◽  
Niloofar Heidari ◽  
Foad Khademi Jahromi ◽  
Roozbeh Amiri ◽  
Mohammadali Ghorbani

In this paper, first, the impact of different gate arrangements on the short-channel effects of carbon nanotube field-effect transistors with doped source and drain with the self-consistent solution of the three-dimensional Poisson equation and the Schr¨odinger equation with open boundary conditions, within the non-equilibrium Green function, is investigated. The results indicate that the double-gate structure possesses a quasi-ideal subthreshold oscillation and an acceptable decrease in the drain induced barrier even for a relatively thick gate oxide (5 nm). Afterward, the electrical characteristics of the double-gate carbon nanotube field-effect transistors (DG-CNTFET) are investigated. The results demonstrate that an increase in diameter and density of the nanotubes in the DG-CNTFET increases the on-state current. Also, as the drain voltage increases, the off-state current of the DG-CNTFET decreases. In addition, regarding the negative gate voltages, for a high drain voltage, increasing in the drain current due to band-to-band tunnelling requires a larger negative gate voltage, and for a low drain voltage, resonant states appear


2005 ◽  
Vol 81 (2-4) ◽  
pp. 428-433 ◽  
Author(s):  
M. Pourfath ◽  
E. Ungersboeck ◽  
A. Gehring ◽  
B.H. Cheong ◽  
W.J. Park ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ali Naderi ◽  
S. Mohammad Noorbakhsh ◽  
Hossein Elahipanah

By developing a two-dimensional (2D) full quantum simulation, the attributes of carbon nanotube field-effect transistors (CNTFETs) in different temperatures have been comprehensively investigated. Simulations have been performed by employing the self-consistent solution of 2D Poisson-Schrödinger equations within the nonequilibrium Green's function (NEGF) formalism. Principal characteristics of CNTFETs such as current capability, drain conductance, transconductance, and subthreshold swing (SS) have been investigated. Simulation results present that as temperature raises from 250 to 500 K, the drain conductance and on-current of the CNTFET improved; meanwhile the on-/off-current ratio deteriorated due to faster growth in off-current. Also the effects of temperature on short channel effects (SCEs) such as drain-induced barrier lowering (DIBL) and threshold voltage roll-off have been studied. Results show that the subthreshold swing and DIBL parameters are almost linearly correlated, so the degradation of these parameters has the same origin and can be perfectly influenced by the temperature.


Sign in / Sign up

Export Citation Format

Share Document