Suppression of short channel effects in 5.1 nm WTe2 in-plane Schottky barrier field-effect transistors by Mo-doping

Author(s):  
Liuming Dou ◽  
Zhiqiang Fan ◽  
Peng Xiao
Author(s):  
Raj Kumar ◽  
Shashi Bala ◽  
Arvind Kumar

To have enhanced drive current and diminish short channel effects, planer MOS transistors have migrated from single-gate devices to three-dimensional multi-gate MOSFETs. The gate-all-around nanowire field-effect transistor (GAA NWFET) and nanotube or double gate-all-around field-effect transistors (DGGA-NTFET) have been proposed to deal with short channel effects and performance relates issues. Nanowire and nanotube-based field-effect transistors can be considered as leading candidates for nanoscale devices due to their superior electrostatic controllability, and ballistic transport properties. In this work, the performance of GAA NWFETs and DGAA-NT FETs will be analyzed and compared. III-V semiconductor materials as a channel will also be employed due to their high mobility over silicon. Performance analysis of junctionless nanowire and nanotube FETs will also be compared and presented.


2012 ◽  
Vol 67 (6-7) ◽  
pp. 317-326 ◽  
Author(s):  
Alireza Heidari ◽  
Niloofar Heidari ◽  
Foad Khademi Jahromi ◽  
Roozbeh Amiri ◽  
Mohammadali Ghorbani

In this paper, first, the impact of different gate arrangements on the short-channel effects of carbon nanotube field-effect transistors with doped source and drain with the self-consistent solution of the three-dimensional Poisson equation and the Schr¨odinger equation with open boundary conditions, within the non-equilibrium Green function, is investigated. The results indicate that the double-gate structure possesses a quasi-ideal subthreshold oscillation and an acceptable decrease in the drain induced barrier even for a relatively thick gate oxide (5 nm). Afterward, the electrical characteristics of the double-gate carbon nanotube field-effect transistors (DG-CNTFET) are investigated. The results demonstrate that an increase in diameter and density of the nanotubes in the DG-CNTFET increases the on-state current. Also, as the drain voltage increases, the off-state current of the DG-CNTFET decreases. In addition, regarding the negative gate voltages, for a high drain voltage, increasing in the drain current due to band-to-band tunnelling requires a larger negative gate voltage, and for a low drain voltage, resonant states appear


2005 ◽  
Author(s):  
Joshua N. Haddock ◽  
Xiaohong Zhang ◽  
Shijun Zheng ◽  
Seth R. Marder ◽  
Bernard Kippelen

2021 ◽  
Author(s):  
Tulika Chawla ◽  
Mamta Khosla ◽  
Balwinder Raj ◽  
Sanjeev Kumar Sharma

This paper reviews the development of various structures of Tunnel Field Effect Transistors. In order to enhance the on-state current and decrease the short-channel effects, various non-planar structures were designed. Among all these non-planar structures, DGDM-GeOI Vertical TFET structure not only provide the benefits of performance enhancement but also fulfill the requirement of reduced footprint of the device.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Hojjatollah Sarvari ◽  
Amir Hossein Ghayour ◽  
Zhi Chen ◽  
Rahim Ghayour

Short channel effects of single-gate and double-gate graphene nanoribbon field effect transistors (GNRFETs) are studied based on the atomistic pz orbital model for the Hamiltonian of graphene nanoribbon using the nonequilibrium Green’s function formalism. A tight-binding Hamiltonian with an atomistic pz orbital basis set is used to describe the atomistic details in the channel of the GNRFETs. We have investigated the vital short channel effect parameters such as Ion and Ioff, the threshold voltage, the subthreshold swing, and the drain induced barrier lowering versus the channel length and oxide thickness of the GNRFETs in detail. The gate capacitance and the transconductance of both devices are also computed in order to calculate the intrinsic cut-off frequency and switching delay of GNRFETs. Furthermore, the effects of doping of the channel on the threshold voltage and the frequency response of the double-gate GNRFET are discussed. We have shown that the single-gate GNRFET suffers more from short channel effects if compared with those of the double-gate structure; however, both devices have nearly the same cut-off frequency in the range of terahertz. This work provides a collection of data comparing different features of short channel effects of the single gate with those of the double gate GNRFETs. The results give a very good insight into the devices and are very useful for their digital applications.


2011 ◽  
Vol 1282 ◽  
Author(s):  
David A. J. Moran ◽  
Donald A. MacLaren ◽  
Samuele Porro ◽  
Richard Hill ◽  
Helen McLelland ◽  
...  

ABSTRACTHydrogen terminated diamond field effect transistors (FET) of 50nm gate length have been fabricated, their DC operation characterised and their physical and chemical structure inspected by Transmission Electron Microscopy (TEM) and Electron Energy Loss Spectroscopy (EELS). DC characterisation of devices demonstrated pinch-off of the source-drain current can be maintained by the 50nm gate under low bias conditions. At larger bias, off-state output conductance increases, demonstrating most likely the onset of short-channel effects at this reduced gate length.


2016 ◽  
Vol 108 (2) ◽  
pp. 023506 ◽  
Author(s):  
Tarun Agarwal ◽  
Bart Sorée ◽  
Iuliana Radu ◽  
Praveen Raghavan ◽  
Gianluca Fiori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document