scholarly journals Towards Deep Robot Learning with Optimizer applicable to Non-stationary Problems

Author(s):  
Taisuke Kobayashi
2020 ◽  
Vol 10 (1) ◽  
pp. 522-533
Author(s):  
Amanda S. S. Correa Leão ◽  
Joelma Morbach ◽  
Andrelino V. Santos ◽  
João R. Santos Júnior

Abstract Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + $\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.


Author(s):  
Andrew Jacobsen ◽  
Matthew Schlegel ◽  
Cameron Linke ◽  
Thomas Degris ◽  
Adam White ◽  
...  

This paper investigates different vector step-size adaptation approaches for non-stationary online, continual prediction problems. Vanilla stochastic gradient descent can be considerably improved by scaling the update with a vector of appropriately chosen step-sizes. Many methods, including AdaGrad, RMSProp, and AMSGrad, keep statistics about the learning process to approximate a second order update—a vector approximation of the inverse Hessian. Another family of approaches use meta-gradient descent to adapt the stepsize parameters to minimize prediction error. These metadescent strategies are promising for non-stationary problems, but have not been as extensively explored as quasi-second order methods. We first derive a general, incremental metadescent algorithm, called AdaGain, designed to be applicable to a much broader range of algorithms, including those with semi-gradient updates or even those with accelerations, such as RMSProp. We provide an empirical comparison of methods from both families. We conclude that methods from both families can perform well, but in non-stationary prediction problems the meta-descent methods exhibit advantages. Our method is particularly robust across several prediction problems, and is competitive with the state-of-the-art method on a large-scale, time-series prediction problem on real data from a mobile robot.


2021 ◽  
Vol 11 (3) ◽  
pp. 1013
Author(s):  
Zvezdan Lončarević ◽  
Rok Pahič ◽  
Aleš Ude ◽  
Andrej Gams

Autonomous robot learning in unstructured environments often faces the problem that the dimensionality of the search space is too large for practical applications. Dimensionality reduction techniques have been developed to address this problem and describe motor skills in low-dimensional latent spaces. Most of these techniques require the availability of a sufficiently large database of example task executions to compute the latent space. However, the generation of many example task executions on a real robot is tedious, and prone to errors and equipment failures. The main result of this paper is a new approach for efficient database gathering by performing a small number of task executions with a real robot and applying statistical generalization, e.g., Gaussian process regression, to generate more data. We have shown in our experiments that the data generated this way can be used for dimensionality reduction with autoencoder neural networks. The resulting latent spaces can be exploited to implement robot learning more efficiently. The proposed approach has been evaluated on the problem of robotic throwing at a target. Simulation and real-world results with a humanoid robot TALOS are provided. They confirm the effectiveness of generalization-based database acquisition and the efficiency of learning in a low-dimensional latent space.


2018 ◽  
Vol 11 (4) ◽  
pp. 269-284
Author(s):  
Hongxin Zhang ◽  
Xingyu Lv ◽  
Wancong Leng ◽  
Xuefeng Ma

Sign in / Sign up

Export Citation Format

Share Document