Sensorless closed loop V/f control of medium-voltage high-power induction motor with synchronized space vector PWM

Author(s):  
Chimezie O. Adiuku ◽  
Abdul Rahiman Beig ◽  
Saikrishna Kanukollu
Author(s):  
D. Sandhya Rani ◽  
A. Appaprao

Multilevel inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters. Among various modulation techniques for a multilevel inverter, the space vector pulse width modulation (SVPWM) is widely used. The complexity is due to the difficulty in determining the location of the reference vector, the calculation of ontimes, and the determination and selection of switching states. This paper proposes a general SVPWM algorithm for multilevel inverters based on standard two-level SVPWM. Since the proposed multilevel SVPWM method uses two-level modulation to calculate the on-times, the computation of on-times for an n-level inverter becomes easier. The proposed method uses a simple mapping to achieve the SVPWM for a multilevel inverter. A general n-level implementation is explained, and experimental results are given for two-level and three-level inverters.


2021 ◽  
Author(s):  
Nagaraja H. Chikkegowda

The space vector PWM (SVPWM) schemes for high power current source drives normally produce low order harmonics due to low switching frequency. To provide a SVPWM with the best harmonic performance, different space vector sequences suitable for a current source rectifier (CSR) are investigated in this project. Details on how to achieve the waveform symmetries with minimum switching frequency for each sequence are discussed. A thorough comparison of the harmonic performance of different space vector sequences based on current source rectifier implementations is carried out. An optimum space vector modulation (SVM) method is proposed to achieve the best line current THD and reduced switching losses. The space vector sequence investigation has been verified in simulation and experimentally using a 10kVA GCT based CSR prototype.


2013 ◽  
Vol 60 (10) ◽  
pp. 4159-4168 ◽  
Author(s):  
Mario J. Duran ◽  
Joel Prieto ◽  
Federico Barrero ◽  
Jose A. Riveros ◽  
Hugo Guzman

Sign in / Sign up

Export Citation Format

Share Document