scholarly journals A Space Vector PWM Scheme for Three level Inverters Based on Two-Level Space Vector PWM

Author(s):  
D. Sandhya Rani ◽  
A. Appaprao

Multilevel inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters. Among various modulation techniques for a multilevel inverter, the space vector pulse width modulation (SVPWM) is widely used. The complexity is due to the difficulty in determining the location of the reference vector, the calculation of ontimes, and the determination and selection of switching states. This paper proposes a general SVPWM algorithm for multilevel inverters based on standard two-level SVPWM. Since the proposed multilevel SVPWM method uses two-level modulation to calculate the on-times, the computation of on-times for an n-level inverter becomes easier. The proposed method uses a simple mapping to achieve the SVPWM for a multilevel inverter. A general n-level implementation is explained, and experimental results are given for two-level and three-level inverters.

Author(s):  
SRIHARIRAO NAMBALLA ◽  
T VAMSEE KIRAN

Multilevel inverters are increasingly being used in high power medium voltage applications when compared to two level inverter due to their merits, such as lower common mode voltage, lower dv/dt, lower harmonics in output voltage and current. Among various modulation techniques for a multilevel inverter, space vector pulse width modulation is poplar due to the merits like, it directly uses the control variable given by the control system and identifies each switching vector as a point in complex space. However the implementation of the SVPWM for a multilevel inverter is complicated. The complexity is due to the difficulty in determining the location of the reference vector, the calculations of on times and the determination and selection of switching states. The multilevel SVPWM method uses the concepts of two level modulations to calculate the on times of an n-level inverter. Use of multilevel inverters has become popular for motor drive applications. Various topologies and modulation strategies will be studied from the available literature. This work is devoted to the study and simulation of a new NPC multilevel inverter system typically suitable for high-performance high-power applications. Simulation of this work will be done in MATLAB/Simulink .


Author(s):  
K. VARALAKSHMI ◽  
K. BALAKRISHNA

This paper proposes a generalized method for the generation of space vector pulse width modulation (SVPWM) signals for multilevel inverters. In the proposed method, the actual sector containing the tip of the reference space vector need not be identified. A method is presented to identify the center of a sub hexagon containing the reference space vector. Using the center of the sub hexagon, the reference space vector is mapped to the innermost sub hexagon, and the switching sequence corresponding to a two-level inverter is determined. A new technique is proposed in this paper, by which these two-level vectors are translated to the switching vectors of the multilevel inverter by adding the center of the sub hexagon to the two-level vectors. The proposed method can be extended to any n-level inverter, and a generalized algorithm is proposed. The scheme is explained for a five-level inverter, and experimental results are presented for a three-level inverter and seven level Inverter.


Author(s):  
Tamiru Debela ◽  
Jiwanjot Singh

Abstract Multilevel inverters (MLIs) have formed a new wave of interest in research and industry. Switched capacitor-based multilevel inverters are used to avoid the need for multiple separated DC sources compared to cascaded MLIs. However, the inclusion of several capacitors creates problems such as high inrush current, voltage imbalance. To avoid these drawbacks, this paper proposes an isolation-based scheme by using a flyback converter in the switched capacitor multilevel inverter. Further, the overall topology provides step-up AC voltage across the load from a single DC source with fewer power switches. To generate a step-up five-level voltage across the load, switched capacitor-based multilevel inverter needs six power switches and only one capacitor. To get the appropriate switching operation to generate the NL-levels, phase disposition pulse width modulation (PD-PWM) has been developed. The extended nine-level S 2 -MLI is also discussed in this paper under different conditions as change in input source voltage and dynamic load change. Moreover, to prove the superior performance of switched-capacitor single DC source multilevel inverter (S2-MLI), comparative analysis with existing single DC source MLI has been performed. The effectiveness and feasibility of the proposed topology are tested with varieties of loads by simulation using Matlab/Simulink. To validate the simulation results, hardware implementation has been done of five-level S2-MLI considering resistive and motor load by using DSpace 1103 controller.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012032
Author(s):  
Nishant Matale ◽  
Mohan Thakre ◽  
Rakesh Shriwastava

Abstract A highly popular alternative in medium voltage and high-power applications is multilevel converters because of their superior performance over conventional two-level converters. The most commonly used control methods in the case of multilevel inverters are sine pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) methods. Among these two control strategies, SVPWM has superior performance over SPWM in terms of DC bus voltage utilization along with a reduction in total harmonic distortion (THD) of line voltages. The classical SVPWM method has various drawbacks such as computational complexity for identifying the location of reference voltage vector, sector identification, region identification, memory requirement to store lookup tables for switching vectors. The novel simplified SVPWM technique is presented for cascaded H-Bridge multilevel inverter (CHBMLI) in this paper. This simplified SVPWM method has overcome the drawbacks of the classical SVPWM method. This new technique has been implemented into a five-level CHBMLI to evaluate performance and also to compare with the SPWM method. The simulation has been performed in MATLAB software.


2012 ◽  
Vol 482-484 ◽  
pp. 390-393
Author(s):  
Wen Lu ◽  
Li Wei ◽  
Hui Ren

This paper introduces a simple space vector PWM algorithm for a cascaded multilevel inverter. The scheme determines the location of the reference vector easily. It uses space state equation to get the value of vector. A cascaded thirteen-level inverter is used to explain the scheme. The scheme can be easily extended to n-level inverter. It is applicable to cascaded multilevel high voltage inverter and cascaded active compensation device. The result of simulation verifies that the scheme is useful in improving utilization of the direct current (dc) link voltage and reducing THD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Jagabar Sathik ◽  
Dhafer J. Almakhles ◽  
N. Sandeep ◽  
Marif Daula Siddique

AbstractMultilevel inverters play an important role in extracting the power from renewable energy resources and delivering the output voltage with high quality to the load. This paper proposes a new single-stage switched capacitor nine-level inverter, which comprises an improved T-type inverter, auxiliary switch, and switched cell unit. The proposed topology effectively reduces the DC-link capacitor voltage and exhibits superior performance over recently switched-capacitor inverter topologies in terms of the number of power components and blocking voltage of the switches. A level-shifted multilevel pulse width modulation scheme with a modified triangular carrier wave is implemented to produce a high-quality stepped output voltage waveform with low switching frequency. The proposed nine-level inverter’s effectiveness, driven by the recommended modulation technique, is experimentally verified under varying load conditions. The power loss and efficiency for the proposed nine-level inverter are thoroughly discussed with different loads.


2009 ◽  
Vol 56 (5) ◽  
pp. 1649-1656 ◽  
Author(s):  
Aneesh Mohamed A. S. ◽  
Anish Gopinath ◽  
M. R. Baiju

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5945 ◽  
Author(s):  
Ryszard Beniak ◽  
Krzysztof Górecki ◽  
Piotr Paduch ◽  
Krzysztof Rogowski

The aim of this paper is to present the real-time implementation and measurements of a reduced switch count in space vector pulse width modulation for three-level neutral point clamped inverters (3L-NPC). We implement space vector pulse width modulation, which uses a prediction algorithm to reduce the number of switches in power transistors (switch count) by up to about 13%. The algorithm applies additional redundant voltage vectors. The method is compute-intensive and was implemented on a dual-core TMS320F28379D digital signal controller. The latest measurements of steady and dynamic states of electric drive, powered by a 3L-NPC inverter using this method, confirmed the possibility of using this method in practical implementation. The implementation and results of the measurements are presented in this paper.


2016 ◽  
Vol 65 (2) ◽  
pp. 235-248
Author(s):  
J. Anitha Roseline ◽  
M. Senthil Kumaran ◽  
V. Rajini

Abstract Current source inverters (CSI) is one of the widely used converter topology in medium voltage drive applications due to its simplicity, motor friendly waveforms and reliable short circuit protection. The current source inverters are usually fed by controlled current source rectifiers (CSR) with a large inductor to provide a constant supply current. A generalized control applicable for both CSI and CSR and their extension namely current source multilevel inverters (CSMLI) are dealt in this paper. As space vector pulse width modulation (SVPWM) features the advantages of flexible control, faster dynamic response, better DC utilization and easy digital implementation it is considered for this work. This paper generalizes SVPWM that could be applied for CSI, CSR and CSMLI. The intense computation involved in framing a generalized space vector control are discussed in detail. The algorithm includes determination of band, region, subregions and vectors. The algorithm is validated by simulation using MATLAB /SIMULINK for CSR 5, 7, 13 level CSMLI and for CSR fed CSI.


Sign in / Sign up

Export Citation Format

Share Document