Computation of the Pulse Wave Velocity in Limbs from Multichannel Impedance Plethysmography

Author(s):  
Risacher ◽  
Jossinet ◽  
McAdams ◽  
Eyn ◽  
McLaughlin ◽  
...  
1993 ◽  
Vol 31 (3) ◽  
pp. 318-322 ◽  
Author(s):  
F. Risacher ◽  
J. Jossinet ◽  
E. T. McAdams ◽  
J. McLaughlin ◽  
Y. Mann ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 169-177
Author(s):  
A. I. P. Wiegerinck ◽  
A. Thomsen ◽  
J. Hisdal ◽  
H. Kalvøy ◽  
C. Tronstad

Abstract The leading cause of health loss and deaths worldwide are cardiovascular diseases. A predictor of cardiovascular diseases and events is the arterial stiffness. The pulse wave velocity (PWV) can be used to estimate arterial stiffness non-invasively. The tonometer is considered as the gold standard for measuring PWV. This approach requires manual probe fixation above the artery and depends on the skills of the operator. Electrical impedance plethysmography (IPG) is an interesting alternative using skin surface sensing electrodes, that is miniaturizable, cost-effective and allows measurement of deeper arteries. The aim of this pilot study was to explore if IPG can be a suitable technique to measure pulse wave velocity in legs as an alternative for the tonometer technique. The PWV was estimated by differences in the ECG-gated pulse arrival times (PAT) at the a. femoralis, a. popliteal, a. tibialis dorsalis and a. dorsalis pedis in nine healthy young adults using IPG and the SphygmoCor tonometer as a reference. The estimated PWV results from bioimpedance and the tonometer were fairly in agreement, and the beat-to-beat variability in PAT was similar. This pilot study indicates that the use of IPG may be a good alternative for estimating PWV in the legs.


2007 ◽  
Vol 211 (S 2) ◽  
Author(s):  
B Schiessl ◽  
M Burgmann ◽  
V Sauer ◽  
A Neubauer ◽  
F Kainer ◽  
...  

2020 ◽  
Vol 23 (1) ◽  
pp. 7-11
Author(s):  
P. Nikolov

The PURPUSE of the present study is changes in function and structure of large arteries in individuals with High Normal Arterial Pressure (HNAP) to be established. MATERIAL and METHODS: Structural and functional changes in the large arteries were investigated in 80 individuals with HNAP and in 45 with optimal arterial pressure (OAP). In terms of arterial stiffness, pulse wave velocity (PWV), augmentation index (AI), central aortic pressure (CAP), pulse pressure (PP) were followed up in HNAP group. Intima media thickness (IMT), flow-induced vasodilatation (FMD), ankle-brachial index (ABI) were also studied. RESULTS: Significantly increased values of pulse wave velocity, augmentation index, central aortic pressure, pulse pressure are reported in the HNAP group. In terms of IMT and ABI, being in the reference interval, there is no significant difference between HNAP and OAP groups. The calculated cardiovascular risk (CVR) in both groups is low. CONCLUSION: Significantly higher values of pulse wave velocity, augmentation index, central aortic pressure and pulse pressure in the HNAP group are reported.


Sign in / Sign up

Export Citation Format

Share Document