Microarray image segmentation using chan-vese active contour model and level set method

Author(s):  
K.A. Mendhurwar ◽  
R. Kakumani ◽  
V. Devabhaktuni
2018 ◽  
Vol 7 (4.10) ◽  
pp. 410
Author(s):  
K. Gopi ◽  
J. Selvakumar

Lung cancer is the most common leading cancer in both men and women all over the world. Accurate image segmentation is an essential image analysis tool that is responsible for partitioning an image into several sub-regions. Active contour model have been widely used for effective image segmentation methods as this model produce sub-regions with continuous boundaries. It is used in the applications such as image analysis, deep learning, computer vision and machine learning. Advanced level set method helps to implement active contours for image segmentation with good boundary detection accuracy. This paper proposes a model based on active contour using level set methods for segmentation of such lung CT images and focusing 3D lesion refinement. The features were determined by applying a multi-scale Gaussian filter. This proposed method is able to detect lung tumors in CT images with intensity, homogeneity and noise. The proposed method uses LIDC-IDRI dataset images to segment accurate 3D lesion of lung tumor CT images.  


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jiaxin Wang ◽  
Shifeng Zhao ◽  
Zifeng Liu ◽  
Yun Tian ◽  
Fuqing Duan ◽  
...  

Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.


Microarray is a significant tool and influential method which is used to analyze the cDNA expression in living beings. With the help of this technology one can compute gene expression profile in massive and parallel way. Microarray image segmentation offers an input for subsequent analysis of the extracted microarray data. This work addresses on the different approaches used for segmentation of microarray images. Based on the morphology, topology of spots various methods such as circular shaped, region based, active-contour model based segmentation, shape based, supervised learning and watershed segmentation has been taken for this study. This paper explores and compiles various non statistical approaches used in the field of microarray image segmentation. Finally general tendencies in microarray image segmentation are presented.


2011 ◽  
Vol 480-481 ◽  
pp. 1206-1209 ◽  
Author(s):  
Ge Ren ◽  
Xing Qin Cao ◽  
Wei Min Pan ◽  
Yong Yang

A new Region-based GAC (geodesic active contour) model was presented, which is the improvement of traditional GAC model. A new region-based signed pressure forces function was presented, which takes the place of the edge stopping function, and can efficiently solve the problem of segmentation of objects with weak edges or without edges. The model is implemented by level set method with a binary level set function to reduce the expensive computational cost of re-initialization of the traditional level set function. The proposed algorithm has been applied to images of different modalities with promising results, which are better than that of traditional GAC model and C-V model.


2021 ◽  
pp. 114811
Author(s):  
Aditi Joshi ◽  
Mohammed Saquib Khan ◽  
Asim Niaz ◽  
Farhan Akram ◽  
Hyun Chul Song ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Maria Tamoor ◽  
Irfan Younas

Medical image segmentation is a key step to assist diagnosis of several diseases, and accuracy of a segmentation method is important for further treatments of different diseases. Different medical imaging modalities have different challenges such as intensity inhomogeneity, noise, low contrast, and ill-defined boundaries, which make automated segmentation a difficult task. To handle these issues, we propose a new fully automated method for medical image segmentation, which utilizes the advantages of thresholding and an active contour model. In this study, a Harris Hawks optimizer is applied to determine the optimal thresholding value, which is used to obtain the initial contour for segmentation. The obtained contour is further refined by using a spatially varying Gaussian kernel in the active contour model. The proposed method is then validated using a standard skin dataset (ISBI 2016), which consists of variable-sized lesions and different challenging artifacts, and a standard cardiac magnetic resonance dataset (ACDC, MICCAI 2017) with a wide spectrum of normal hearts, congenital heart diseases, and cardiac dysfunction. Experimental results show that the proposed method can effectively segment the region of interest and produce superior segmentation results for skin (overall Dice Score 0.90) and cardiac dataset (overall Dice Score 0.93), as compared to other state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document