A Lightweight Underwater Object Detection Model: FL-YOLOV3-TINY

Author(s):  
Cong Tan ◽  
DanDan CHEN ◽  
HaiJie Huang ◽  
QiuLing Yang ◽  
XiangDang Huang
2021 ◽  
Vol 11 (8) ◽  
pp. 3531
Author(s):  
Hesham M. Eraqi ◽  
Karim Soliman ◽  
Dalia Said ◽  
Omar R. Elezaby ◽  
Mohamed N. Moustafa ◽  
...  

Extensive research efforts have been devoted to identify and improve roadway features that impact safety. Maintaining roadway safety features relies on costly manual operations of regular road surveying and data analysis. This paper introduces an automatic roadway safety features detection approach, which harnesses the potential of artificial intelligence (AI) computer vision to make the process more efficient and less costly. Given a front-facing camera and a global positioning system (GPS) sensor, the proposed system automatically evaluates ten roadway safety features. The system is composed of an oriented (or rotated) object detection model, which solves an orientation encoding discontinuity problem to improve detection accuracy, and a rule-based roadway safety evaluation module. To train and validate the proposed model, a fully-annotated dataset for roadway safety features extraction was collected covering 473 km of roads. The proposed method baseline results are found encouraging when compared to the state-of-the-art models. Different oriented object detection strategies are presented and discussed, and the developed model resulted in improving the mean average precision (mAP) by 16.9% when compared with the literature. The roadway safety feature average prediction accuracy is 84.39% and ranges between 91.11% and 63.12%. The introduced model can pervasively enable/disable autonomous driving (AD) based on safety features of the road; and empower connected vehicles (CV) to send and receive estimated safety features, alerting drivers about black spots or relatively less-safe segments or roads.


2020 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Wei Zhao ◽  
William Yamada ◽  
Tianxin Li ◽  
Matthew Digman ◽  
Troy Runge

In recent years, precision agriculture has been researched to increase crop production with less inputs, as a promising means to meet the growing demand of agriculture products. Computer vision-based crop detection with unmanned aerial vehicle (UAV)-acquired images is a critical tool for precision agriculture. However, object detection using deep learning algorithms rely on a significant amount of manually prelabeled training datasets as ground truths. Field object detection, such as bales, is especially difficult because of (1) long-period image acquisitions under different illumination conditions and seasons; (2) limited existing prelabeled data; and (3) few pretrained models and research as references. This work increases the bale detection accuracy based on limited data collection and labeling, by building an innovative algorithms pipeline. First, an object detection model is trained using 243 images captured with good illimitation conditions in fall from the crop lands. In addition, domain adaptation (DA), a kind of transfer learning, is applied for synthesizing the training data under diverse environmental conditions with automatic labels. Finally, the object detection model is optimized with the synthesized datasets. The case study shows the proposed method improves the bale detecting performance, including the recall, mean average precision (mAP), and F measure (F1 score), from averages of 0.59, 0.7, and 0.7 (the object detection) to averages of 0.93, 0.94, and 0.89 (the object detection + DA), respectively. This approach could be easily scaled to many other crop field objects and will significantly contribute to precision agriculture.


Author(s):  
Runze Liu ◽  
Guangwei Yan ◽  
Hui He ◽  
Yubin An ◽  
Ting Wang ◽  
...  

Background: Power line inspection is essential to ensure the safe and stable operation of the power system. Object detection for tower equipment can significantly improve inspection efficiency. However, due to the low resolution of small targets and limited features, the detection accuracy of small targets is not easy to improve. Objective: This study aimed to improve the tiny targets’ resolution while making the small target's texture and detailed features more prominent to be perceived by the detection model. Methods: In this paper, we propose an algorithm that employs generative adversarial networks to improve small objects' detection accuracy. First, the original image is converted into a super-resolution one by a super-resolution reconstruction network (SRGAN). Then the object detection framework Faster RCNN is utilized to detect objects on the super-resolution images. Result: The experimental results on two small object recognition datasets show that the model proposed in this paper has good robustness. It can especially detect the targets missed by Faster RCNN, which indicates that SRGAN can effectively enhance the detailed information of small targets by improving the resolution. Conclusion: We found that higher resolution data is conducive to obtaining more detailed information of small targets, which can help the detection algorithm achieve higher accuracy. The small object detection model based on the generative adversarial network proposed in this paper is feasible and more efficient. Compared with Faster RCNN, this model has better performance on small object detection.


2021 ◽  
Author(s):  
D. Nathasha U. Naranpanawa ◽  
Yanyang Gu ◽  
Shekhar S. Chandra ◽  
Brigid Betz-Stablein ◽  
Richard A. Sturm ◽  
...  

2018 ◽  
Vol 7 (11) ◽  
pp. 448 ◽  
Author(s):  
Robert Chew ◽  
Kasey Jones ◽  
Jennifer Unangst ◽  
James Cajka ◽  
Justine Allpress ◽  
...  

While governments, researchers, and NGOs are exploring ways to leverage big data sources for sustainable development, household surveys are still a critical source of information for dozens of the 232 indicators for the Sustainable Development Goals (SDGs) in low- and middle-income countries (LMICs). Though some countries’ statistical agencies maintain databases of persons or households for sampling, conducting household surveys in LMICs is complicated due to incomplete, outdated, or inaccurate sampling frames. As a means to develop or update household listings in LMICs, this paper explores the use of machine learning models to detect and enumerate building structures directly from satellite imagery in the Kaduna state of Nigeria. Specifically, an object detection model was used to identify and locate buildings in satellite images. In the test set, the model attained a mean average precision (mAP) of 0.48 for detecting structures, with relatively higher values in areas with lower building density (mAP = 0.65). Furthermore, when model predictions were compared against recent household listings from fieldwork in Nigeria, the predictions showed high correlation with household coverage (Pearson = 0.70; Spearman = 0.81). With the need to produce comparable, scalable SDG indicators, this case study explores the feasibility and challenges of using object detection models to help develop timely enumerated household lists in LMICs.


2014 ◽  
Vol 20 (1) ◽  
pp. 180-197 ◽  
Author(s):  
Hyeonwoo Cho ◽  
Jeonghwe Gu ◽  
Hangil Joe ◽  
Akira Asada ◽  
Son-Cheol Yu

Author(s):  
Elgar Kanhere ◽  
Nan Wang ◽  
Ajay Giri Prakash Kottapalli ◽  
Vignesh Subramaniam ◽  
Jianmin Miao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document