Effects of cogging torque due to amount of stator slot in permanent magnet generator using finite element analysis

Author(s):  
Hew Wooi Ping ◽  
Wong Yin Keet
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2311
Author(s):  
Mudassir Raza Siddiqi ◽  
Tanveer Yazdan ◽  
Jun-Hyuk Im ◽  
Muhammad Humza ◽  
Jin Hur

This paper presents a novel topology of dual airgap radial flux permanent magnet vernier machine (PMVM) in order to obtain a higher torque per magnet volume and similar average torque compared to a conventional PMVM machine. The proposed machine contains two stators and a sandwiched yokeless rotor. The yokeless rotor helps to reduce the magnet volume by providing an effective flux linkage in the stator windings. This effective flux linkage improved the average torque of the proposed machine. The competitiveness of the proposed vernier machine was validated using 2D finite element analysis under the same machine volume as that of conventional vernier machine. Moreover, cogging torque, torque ripples, torque density, losses, and efficiency performances also favored the proposed topology.


2015 ◽  
Vol 793 ◽  
pp. 197-201 ◽  
Author(s):  
Aamir Hussain Memon ◽  
Taib bin Ibrahim ◽  
N. Perumal

This paper presents the design of linear permanent magnet generator for wave energy conversion using finite element analysis software. Four designs have been proposed which are simple, lightweight, portable and can produce 100 Watt electric power. Air-cored linear permanent magnet generator have been chosen and their electromagnetic characteristic were analyzed using finite element analysis. The determined electromagnetic analysis reveals that rectangular permanent magnet arrangement (Rect-PM) design gives efficient performance as compared to other designs.


Author(s):  
R. Suhairi ◽  
R. N. Firdaus ◽  
F. Azhar ◽  
K.A. Karim ◽  
A. Jidin ◽  
...  

<p>This paper discusses the performance of three and five-phase double stator slotted rotor permanent magnet generator (DSSR-PMG). The objective of this research is to propose  five-phase DSSR-PMG structure that could minimize output voltage ripple compared to three phase. In this research Finite Element Analysis (FEA) is used to simulate the characteristic of the three and five-phase permanent magnet generator at various speeds. The characteristic of back-EMF, flux linkage, cogging torque and flux density for three and five-phase configurations is presented. As a result, five-phase DSSR-PMG shows a lower cogging  torque and voltage ripple compared to three-phase. The cogging torque for five-phase is 80% lower than three-phase DSSR-PMG and the ripple voltage (peak to peak) of back-EMF in five-phase is 2.3% compared to the three-phase DSSR-PMG which is 55%.</p>


Author(s):  
Shiva Nourifard ◽  
Seyyed Mahmoud Hasheminejad ◽  
Majid Jami

In this study, design, design calculations and simulation of a permanent magnet generator, which includes two sections of radialand axial flux, are discussed. The output power from the generator is 1.1 kilowatt. In the design of the generator, a cone-shapedstructure with a 90-degree cone angle of 45 degrees from the sides is used for the rotor. In order to compare the various structuresof the synchronous generator, and given that today, permanent magnet generators have been considered with regard to featuressuch as lower weight, higher yields and higher power density than other conventional generators. A finite element analysis of thegenerator developed in Maxwell software. In the radial flux section, the generator includes a conical rotor and a cone stator. Thewindings on the external stator are trapezoidal and are located in stator racks. The finite element analysis of the generator confirmsthat permanent magnet magnets designed on the inner rotor have provided a magnetic flux equal to 1.2 Tesla in the air gap betweenthe generator and the winding of the stator. The rotor magnetic field analysis, rotor magnetic field strength, magnetic field intensity,and magnetic field density at a speed of 500 rpm for cone structure have been performed. In the axial flux section, the generatorconsists of two rotors and a grooved stator, which is obtained by simulating a 1.1 kW power with a sinusoidal three-phase voltage.Two sections of radial flux with a cone-shaped rotor and axial flux side by side make up the generator.


Sign in / Sign up

Export Citation Format

Share Document