Analytical model for predicting AC losses in form-wound machine windings due to stator current interactions

Author(s):  
Wanjun Zhang ◽  
T. M. Jahns
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2471 ◽  
Author(s):  
Jing Li ◽  
Tao Zheng ◽  
Zengping Wang

An accurate calculation of short-circuit current (SCC) is very important for relay protection setting and optimization design of electrical equipment. The short-circuit current for a doubly-fed induction generator wind turbine (DFIG-WT) under excitation regulation of a converter contains the stator current and grid-side converter (GSC) current. The transient characteristics of GSC current are controlled by double closed-loops of the converter and influenced by fluctuations of direct current (DC) bus voltage, which is characterized as high order, multiple variables, and strong coupling, resulting in great difficulty with analysis. Existing studies are mainly focused on the stator current, neglecting or only considering the steady-state short-circuit current of GSC, resulting in errors in the short-circuit calculation of DFIG-WT. This paper constructs a DFIG-WT total current analytical model involving GSC current. Based on Fourier decomposition of switch functions and the frequency domain analytical method, the fluctuation of DC bus voltage is considered and described in detail. With the proposed DFIG-WT short-circuit current analytical model, the generation mechanism and evolution law of harmonic components are revealed quantitatively, especially the second harmonic component, which has a great influence on transformer protection. The accuracies of the theoretical analysis and mathematical model are verified by comparing calculation results with simulation results and low-voltage ride-through (LVRT) field test data of a real DFIG.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8034
Author(s):  
Mingyu Choi ◽  
Gilsu Choi

Interior permanent magnet (IPM) machines with hairpin windings have attracted significant attention in EV applications owing to their low DC resistance and excellent thermal capabilities. In this paper, we present a comprehensive investigation of AC winding losses in IPM machines for traction applications, including analytical modeling, the influence of design parameters, and finite element (FE) verification. The proposed analytical model can predict the trends in AC winding losses for any number of bar conductors and slot/pole combinations. The results of the parametric study, obtained via the analytical model, are presented to examine the effects of key design parameters, such as conductor width and height, phase arrangement, and slot-per-pole-per-phase (SPP). To incorporate more practical issues into the analysis of IPM machines with hairpin windings, extensive FE simulations were conducted. The results indicated that the AC winding losses decrease with an increasing number of conductor layers and phases inside the slot.


Author(s):  
Marouane Hadjami ◽  
Hubert Razik ◽  
Mohamed El Kamel Oumaamar ◽  
Abdelmamek Kezzar

<p>This paper presents a new analytical model for inner bearing raceway defect. The model is based on the presentation of different machine inductances as Fourier series without any kind of reference frame transformation. The proposed approach shows that this model is able to give important features on the state of the motor. Simulation based on spectral analysis of stator current signal using Fast Fourier Transform (FFT) and experimental results are given to shed light on the usefulness of the proposed model.</p>


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-911-C8-912
Author(s):  
Yu. V. Rakitin ◽  
V. T. Kalinnikov
Keyword(s):  

2002 ◽  
Vol 4 (1-2) ◽  
pp. 26
Author(s):  
Paulo Fernando Lavalle Heilbron Filho ◽  
Jesus Salvador Perez Guerrero ◽  
Elizabeth May Pontedeiro ◽  
Nerbe J. Ruperti, Jr. ◽  
Renato M. Cotta

Sign in / Sign up

Export Citation Format

Share Document